Women’s Orgasm

Cindy M. Meston
University of Texas at Austin

Roy J. Levin
University of Sheffield

Marcia L. Sipaksi
University of Miami School of Medicine

Elaine M. Hull
Florida State University

Julia R. Heiman
The Kinsey Institute, Indiana University

An orgasm in the human female is a variable, transient peak sensation of intense pleasure, creating an altered state of consciousness, usually with an initiation accompanied by involuntary, rhythmic contractions of the pelvic striated circumanal muscles, often with concomitant uterine and anal contractions, and myotonia that resolves the sexually induced vasocongestion and myotonia, generally with an induction of well-being and contentment. Women’s orgasms can be induced by erotic stimulation of a variety of genital and non-genital sites. As of yet, no definitive explanations for what triggers orgasm have emerged. Studies of brain imaging indicate increased activation at orgasm, compared to pre-orgasm, in the paraventricular nucleus of the hypothalamus, periaqueductal gray of the midbrain, hippocampus, and the cerebellum. Psychosocial factors commonly discussed in relation to female orgasmic ability include age, education, social class, religion, personality, and relationship issues. Findings from surveys and clinical reports suggest that orgasm problems are the second most frequently reported sexual problems in women. Cognitive-behavioral therapy for anorgasmia focuses on promoting changes in attitudes and sexually relevant thoughts, decreasing anxiety, and increasing orgasmic ability and satisfaction. To date there are no pharmacological agents proven to be beneficial beyond placebo in enhancing orgasmic function in women.

Key Words: physiology of orgasm, treatment of anorgasmia, women’s orgasm.

Definition of Women’s Orgasm

More than one author has commented on the extensive literature that exists about the human female orgasm. It has been discussed from clinical, etiological, philosophical, physiological, psychological, sociological,
typological perspectives (Levin, 1992). Symons (1979, p. 86) observed although “the human female orgasm definitely exists [it] inspires a detailed debate, polemics, ideology, technical manuals and scientific and medical literature solely because it is so often absent!” It is clear that natural selection has not favored females who could orgasm easily, hence it is likely an essential feature of the reproductive process. Even its definition is hard to pin down because ideologically it has both nomothetic (the search for general laws) and idiographic (individual’s performance) aspects. Because the neural activity of the cerebral neuronal tracts is so poorly understood, most of those defining orgasm used observed or observed physical changes (usually muscular and cardiovascular), with an emphasis that this is the culmination or most intense element of sexual arousal. Levin, Wagner, and Ottesen (1981) added some definitions by authors from a variety of backgrounds, and 20 years later and Binik (2001) repeated the exercise with a doubling of the authorations. They divided them into three groups: those with primarily a psychological perspective, those with a psychological perspective, and those with an integrated biosocial perspective. The authors still had to include a satisfactory universal definition of orgasm could not be amplified. Considering that the human orgasm is regarded as the ultimate state of ecstatic feeling without recourse to drugs, it is remarkable that few of the definitions incorporated the word “pleasurable.” The more it reports that women with complete spinal cord injury (SCI) can experience orgasm further complicates an all-inclusive definition of orgasm (Sipeki, Alexander, & Rosen, 1999). A major problem in defining orgasm is the emphasis that is given to subjective or self-report, as opposed to objective physiological signs. Despite all these difficulties, it is useful to devise at least an operational definition for women’s orgasm, s, we provide the following:

Organism in the human female is a variable, transient peak sensation of intense pleasure, creating an altered state of consciousness, usually with an initiation accompanied by involuntary, rhythmic contractions of the pelvic striated circumanal musculature, often with concomitant uterine and anal contractions, and myotonia that resolves the sexually induced accommodation (sometimes only partially) and myotonia, generally with an induction of well-being and contentment.

Typologies of Women’s Orgasm

Intriguingly, typologies of orgasm only exist for women; those for men have not been explored, even though some therapists have suggested they exist (e.g., Zilbergeld, 1979). Most of the typologies (S. Fisher, 1983) are from self-reported perceptions of women distinguishing orgasms. Mic sensations induced by clitoral stimulation (warm, ticklish, electrical, sharp) from those obtained by vaginal stimulation (throbbing, deep, soothing, comfortable). A frequently quoted typology is that of I. Singer (1975, pp. 72-75), a philosopher, with no experience conducting laboratory studies, who analyzed the descriptions of orgasms from a limited literature and characterized three: (a) “vulval,” rhythmic contractions of the vagina activated by either clitoral or coital stimulation, (b) “uterine,” no vaginal contractions but accompanied by apnoea and gasping activated during coitus alone and largely due to penile-cervix contact, and (c) “blended,” containing elements of both vulval and uterine orgasms activated by coitus and accompanied by apnoea.

Great play was made about the importance of apnoea and, especially, cervical stimulation. The latter was not so much about stimulation of the cervix, per se, as about its displacement by the thrusting penis, causing the uterus to rub against the peritoneum, claimed by I. Singer and Singer (1972) to be a “highly sensitive organ.” Unfortunately, the total evidence for this typology rests on limited scientific observations obtained in remarkably few individuals (Levin, 2001). Furthermore, the role of the cervix in a woman’s sexual response (viz., uterine orgasm) is unclear. One reviewer declared that, depending on the studies cited, any position can be supported (Johns, 1997), whereas a more recent reviewer concluded that evidence for and against a role of the cervix in orgasm is weak and that observational studies cannot answer the question (Grimes, 1999). Another difficulty with this typology is that, according to Ingelman-Sundberg (1997), the anterior vaginal wall acts like a hammock around the urethra, and during coitus the penis stretches two of its ligaments that insert around the base of the clitoris thus effectively stimulating it during thrusting. If this mechanism operates in all penile-vaginal coital penetrations, it would create both uterine and vulval stimuli or the so-called “blended” stimulus.

Although Masters and Johnson (1966) claimed that all orgasms in females were physiologically identical, regardless of the source of stimulation, they did not have the instrumentation to obtain detailed muscular recordings for possible differences between clitoral and so-called G-spot (anterior vaginal wall) induced orgasms. There is now some limited physiological laboratory evidence that different patterns of uterine (smooth muscle) and striated pelvic muscular activity may occur with vaginal anterior wall stimulation, as opposed to clitoral stimulation. One such set of recordings is shown in Levin (2001). The case for such a dual typology may well be made more credible by this type of evidence.

Bohlen, Held, Sanderson, and Ahlgren (1982) characterized the vaginal muscular contractions at orgasm in their 11 nulliparous women into
typologies, which varied greatly in terms of orgasm duration. The logies were (a) those that had regular rhythmic contractions (Mean tion of orgasm duration 13 seconds), (b) those that had regular contractions later irregular ones (Mean orgasm duration 50.6 seconds), and (c) e that had no regular rhythmic contractions during their orgasms in duration of orgasm 24.4 seconds). To create a muscular typology ich a range with so few participants is premature, but, unfortu-
ly, no further studies have been reported. There is a need for simul-
ous recordings of the uterine and vaginal motility at orgasm in a e sample of women.

Gender Differences in Orgasm

Written descriptions/accounts of orgasms by men and women, with obvious gender clues removed, could not be differentiated by sex n read by other men and women (Vance & Wagner, 1976). This sug-

t that men and women share common mental experiences during sm. Four differences in male and female orgasms, however, have a proposed: (a) unlike the male, the female can have repeated (mul-

p) orgasms separated by very short intervals (Masters & Johnson, 6, p. 131); (b) the female can have an extended orgasm, lasting for a ; time (so-called “status orgasmus,” Masters & Johnson, p. 131); (c) e are differences in the recorded pattern of pelvic muscular contrac-
s; specifically, men have a divided rhythmic pattern not seen in nen (Bohlen, Held, Sanderson, & Ahlgren, 1982); and (d) once the e orgasm is initiated, its further expression is automatic even if sex-
stimulation is stopped; if stimulation is stopped in the middle of er clitoral-induced or vaginal-induced female orgasm, the female asm is halted (Sherfey, 1972, p. 121).

Why Do Women Have Orgasms?

It is generally accepted that female orgasms are not essential for reduc- tion. Any benefit for various aspects of female biology is, as of , unclear. There are a number of explanations from the literature arding why the human female has orgasms: (a) the reward of intense asure for acceptance of the danger of coitus with its possibility of gnancy (and of possible death in childbirth); (b) to end coitus; (c) for olving pelvic vasocongestion/arsenal; (d) for resolving vaginal tenting lows the cervix to enter the seminal pool; (e) orgasmic uterine con-
tions may create a possible sperm “upsuck”; (f) to create arousal in a male by felt vaginal contractions on the penis and cause ejaculation pturing the semen); (g) for inducing lassitude to keep the female hori-
tal and thereby reducing seminal “flowback”; (h) because of the dif-
ficulty in attaining orgasm (especially coitus), orgasm acts as a “Mr. Right” indicator and aids the creation of a strong pair bond; (i) to create the loss of body boundaries and separateness allowing a merger or fusion with the chosen coital partner; (j) to create psychological resuscitation—like an electric shock redistributing the potentials of the brain; (k) to release oxytocin, which affects motility of the uterus and fallopian tubes and possibly to induce bonding feelings and emotions; (l) to release Antidiuretic Hormone (ADH) for the possible contraction of uterine musculature and to inhibit urination and delay sperm losses from flowback; (m) for manipulation of the uptake or rejection (flow-
back) of deposited sperm; (n) by its activation of muscular contractions and the concomitant increased blood flow, orgasms maintain the func-
tionality of the genital tract (Levin, 2003a).

The history of the claimed importance of the female orgasm to reproduction is full of speculative functions with little or no scientific data for their support. Orgasmic coitus was said to activate ovulation and close off the womb to air, thus facilitating conception (Laqueur, 1990). When it was later shown that the human female was a spontaneous ovulator at mid-cycle, unconnected with coitus, the discourse was refocused on the role of uterine orgasmic contractions in the movement of ejaculated spermatozoa through the cervix, into the uterus, and then into the fallopian tubes. I. Singer (1973), in the light of his protagonist for his dual typology of female orgasm (so-called uterine and vulval), published an extensive discussion about fertility and the female orgasm in which he explored issues of (a) uterine suction, (b) extraterine factors affecting the mechanics of uterine suction (viz., vaginal tenting), and (c) the ejaculatory timing in coitus (i.e., ejaculation must occur before orgasm to assist sperm transport, but see the discussion that follows regarding the proposals of Baker & Bellis, 1995).

It has often been suggested that uterine suction created by the contrac-
tions of the uterus at orgasm would facilitate the transport of sper-
matozoa into the uterus and then to the fallopian tubes. Evidence now shows the fastest transport of spermatozoa into the human uterus is actually in the sexually unstimulated condition (Levin, 2002, 2003a). One essential feature of sexual arousal of the female genitalia is to create the expansion of the vagina (vaginal tenting) and elevation of the uterocervix from the posterior vaginal wall to reduce the possibility of the rapid entry of ejaculated spermatozoa into the uterus. This gives time for the initiation of the decocagulation of the semen and the capaci-
tion of the spermatozoa to begin, and it reduces the chance of incom-
potent sperm being too rapidly transported into the fallopian tubes. The female orgasm, by dissipating arousal and initiating the resolution of
Whipple's preliminary analysis would facilitate conception, whereas vulval ones would not. The cervical disposition created by the former orgasm would allow rapid sperm entry before capacitation had been initiated and, thus, facilitate the uterine/tubal entry of sperm incompetent to fertilize. Ultrasound imaging of face-to-face coitus did not show penile cervical contact (Riley, Lee, & Riley, 1992) as would be expected if Singer's uterine orgasm were to be induced, but the recent imaging by MRI of the relationships between the penis, cervix, and the uterus during coitus and masturbation has confirmed the concept of vaginal tenting in a relatively small number of couples (Faux, Lapray, Callede, Maubon, & Lanfrey, 2002; Faux, Lapray, Courtois, Maubon, & Lanfre, 2001; Schultz, van Andel, Sabelis, & Mooyaart, 1999). It is, thus, likely that tenting occurs in face-to-face coitus and that its effect on fertilization is positive (Levin, 2002, 2003a). It is clear that more MRI scans of human coital activity are needed to confirm this definitively.

A less controversial claim of one of the functions of orgasm to aid in the reproductive process is that if the female allows the expression of orgasm during coitus, its contractions of the vagina can excite the male ejaculate thus allowing the female to capture the sperm of her chosen inseminator. Orgasm increases the secretion of prolactin (Kruger, Haake, Hartman, Schedlowksi, & Exton, 2002). If this increased secreted prolactin in plasma is able to enter into the vaginal, cervical, or uterine fluids, it might be a factor in influencing the entry of calcium into the sperm as it acts as a physiological ionophore. This action could play a role in the activation of spermatozoa in the female tract (Reyes, Parra, Chavarria, Goicoechea, & Rosado, 1979). Finally, one area of the putative involvement of orgasm in reproduction that is generally not discussed is its use to induce and encourage the first stage of or to relieve the pain of childbirth (Pranzarone, 1991). Some women have spontaneous orgasms during the passage of the fetal head through the vaginal canal, probably through the stretching activation of the cluster of erotic sites along the anterior vaginal wall.

Objective Signs of Orgasm

Orgasm is a subjective experience accompanied by a number of physiological body changes. The degree to which these changes vary among individuals is not known. Males have little difficulty in identifying orgasm because, although orgasm and ejaculation are created by distinct mechanisms, (see Levin, 2003b for references), it is rare for the former not to accompany the latter. In women, the achievement of orgasm appears to be less facile than for males, and recognizing that it has occurred can be difficult for some. Thus, just asking previously anorgas-
womens whether they experienced an orgasm after a treatment or spucic session is somewhat unreliable. An objective indicator of a orgasm has occurred to confirm or to inform any subjective t would be of real clinical and therapeutic value.

jective indicators of orgasm have been sought for many years, often little regard for their utility in the clinical context. Kinsey, Pomeroy, in, and Gebhard (1953) proposed "the abrupt cessation of the oft strenuous movements and extreme tensions of the previous sexual ity and the peace of the resulting state" (p. 628) as the most obvious nce that orgasm had occurred in the human female. Masters and son (1966) described the onset of orgasm as a "sensation of suspens or stoppage" (p. 135). Clearly, however, the indicator must involve a change that is unique to orgasm, which rules out simple measures, as peaks of blood pressure, heart and respiratory rates, or even a 3 subject's own vocalizations indicating it is impending or is occurbecause such peaks can arise even if no orgasm occurs. Remarkably, of the so-called objective indicators of female orgasm rely on the nal, nearly 40-year-old observations and descriptions of Masters and son (1966). They are of three types: prospective—those indicating impending orgasm, current—those occurring during the actual sm, and retrospective—those indicating that an orgasm has red. They are listed in Table 1 and described in detail in the followection. Surprisingly, even such a simple classification system has its lems, as it is possible to place some of the indicators in either the nt or retrospective category, depending on the chosen definition of initiation of the orgasm. It is unclear whether orgasm should be ned as starting when the woman mentally perceives it, or her it starts when the first physical manifestation occurs. Kinsey et al (1950) tried to limit the definition of orgasm to the sudden and abrupt ction of sexual tension. The "spasms" into which individuals are w were argued to be the "after effects" of the orgasm, and the "vag spa"ms" were regarded simply as "extensions of the spasms that may ve the whole body after orgasms" (p. 632). Hite (1976) also regarded sm as a brief intense feeling followed by contractions.

Prospective Changes

he paired labia minora on either side of the vaginal introitus are inuous ventrally with the prepuce and frenulum of the clitoris and the labia majora posteriorly. They are composed of adipose tissue, ective tissue rich in elastic fibers with smooth muscle fibers and erous wide veins. The amount of cavernous tissue present is vari- In some it is extensive, and in others it is hardly present. The tis-

<table>
<thead>
<tr>
<th>Table 1 Characteristic Changes Occurring During Orgasm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous</td>
</tr>
<tr>
<td>Respiration</td>
</tr>
<tr>
<td>- usually peaks to a maximum at initiation of orgasm</td>
</tr>
<tr>
<td>- usually peaks at initiation of orgasm and then decreases</td>
</tr>
<tr>
<td>- rhythmic contractions (throb/ting) of outer third (orgasmic platform) due to pelvic striated muscle contractions</td>
</tr>
<tr>
<td>- contractions mirroring vaginal contractions</td>
</tr>
<tr>
<td>- dilation of os immediately after orgasm lasting 20-30 minutes</td>
</tr>
<tr>
<td>Hormonal</td>
</tr>
<tr>
<td>Anterior pituitary</td>
</tr>
<tr>
<td>- increased secretion of prolactin</td>
</tr>
<tr>
<td>Posterior pituitary</td>
</tr>
<tr>
<td>- increased secretion of ADH (Vasopressin) and Oxytocin</td>
</tr>
<tr>
<td>VIP</td>
</tr>
<tr>
<td>- increase in plasma VIP</td>
</tr>
</tbody>
</table>

Derived primarily from Masters and Johnson (1966).

sue is a spongy mass like that of the clitoris except that it does not have a capsule around it and has fewer nerves in the trabeculae. Merkel tacle discs and genital corpuscles (Dodge/Krause) are found in the prepuse and ventral part with a rich network of nerves. Free nerve endings lie just beneath the germinative stratum and Pacinian corpuscles and are frequently noted along the courses of nerves (Erickson & Montagna, 1972; Krantz, 1958). Numerous eccrine sweat glands and a few apocrine glands are present.

During sexual arousal, the labia become engorged with blood and increase in size, adding on about 1 cm to the length of the vagina. According to Masters and Johnson (1966, pp. 41-42), once their initial engorgement has been induced, vivid color changes occur with further sexual arousal. The color changes were said to be "clinically patho-nomic" of impending orgasm as the claim was made that "no pre-
pausal woman has been observed to reach plateau-phase levels of tension, develop the ‘sex skin’ color changes and then not experi-

ance orgasm.” After the orgasm occurs, the color changes rapidly in 10-15 seconds, from deep red to light pink. If the color change place and then the sexual stimulus is removed, it rapidly fades, ahead of the slower loss of the engorgement. No other researchers confirmed these findings despite this highly specific claim of a single orgasm on the minora labia color change. In fact, there has been little detailed study of the minora labia apart from the suggested anism by which they become lubricated (Levin, 1999b) and that increased temperature during sexual arousal has been used as an active indicator of arousal (Henson, Rubin, Henson, & Williams, 1977) to and after orgasm (Henson, Rubin, & Henson, 1982). The color changes of the labia are presumably due to the changing hemodynamics of tissue in relation to increased blood flow, tissue congestion, and metabolism (oxygen consumption) indicating the balance between oxygenated (red/pink) and deoxygenated or reduced hemoglobin (blue). The color of the mucosa of the labia during sexual arousal is the result of the increased blood flow to the labia during sexual arousal. The basal state vaginal surface which has a very low pH, rapidly increases during sexual arousal up to a maximum of 7.4. Repetition of this study (Sommers, Caspers, Eaders, Klotz, & Simon, 2001) confirmed the vaginal findings and showed that the minora followed a similar pattern.

Current Indicators of Orgasm

Rhythmic Contractions

The resting vagina is a collapsed tube lined with a stratified squa-

es epithelium, approximating an elongated S-shape in longitudinal

and an H-shape in cross-section, invested with an outer longitudi-
al and inner circular layer of smooth muscle. It is anchored amid a of powerful, voluntary, striated muscles (pelvic diaphragm, consist-
ing of the pubococcygeus and iliococcygeus muscles) from which the pubo-
gueus has fibers that insert into the smooth muscle (Kegel, 1952a;

b, 2003b). Balloon recordings of the pressure inside the vagina

that just before orgasm is initiated there is a slow increase, pro-
bable to an increase in tone of these circumvaginal muscles (see Fig-

1), although the tone of the vaginal smooth muscle per se may also

be involved. According to Masters and Johnson (1966, p. 118), the con-

tractions recorded in the vagina begin some 2-4 seconds after the subj-

ective appreciation of the start of the orgasm. They occur in many pre-

and postmenopausal women and are due to the activation of the circum-
vaginal striated muscles (especially the pelvic diaphragm, bulbo-

spinosus, ischiocavernosus), which involuntarily contract in 0.8 second repetitions. This squeezes the outer third of the vagina (designated the “orgasmic platform” by Masters & Johnson, 1966) with some force that gradually becomes weaker as the interval between contractions increases.

Contractions were not thought to be the primary initiator of the orgasmic experience because they began a few seconds after the woman perceived that orgasm had started (but see the later section on “What triggers female orgasm?”). Their number (and power) varies enormously and is obviously dependent on the duration of the orgasm and the strength of the pelvic muscle activity. Masters and Johnson (1966) reported that the stronger the orgasm, the greater the number of contractions and, thus, indirectly the longer the duration of orgasm (as each contraction was approximately 0.8 seconds apart). However, if the number of contractions and their approximate duration are multiplied together, this gives an approximate duration of each grade of orgasm; “mild orgasms” had an average of 3-5 contractions (2.4 to 4 seconds long), “normal” ones 5-8 (4 to 6.4 seconds long), and “intense” orgasms had 8-12 contractions (4 to 9.6 seconds long). This claim and quantification was given without any supporting data. Using physiological (pressure) recordings, there has been difficulty establishing any link between the contractions and the per-

Figure 1. Recording of changes in vaginal luminal pressure measured by a water-filled balloon (diameter 1.5 cm, length 3.5 cm) during self-induced orgasm by clitoral stimulation. The rise in muscular tone followed by 10-11 individual constrictions is clearly seen. The upper trace is the electrocardiogram recorded by telemetry. The start and finish of the orgasm (from the women’s reports) is shown by the two arrows, and the subjective grading of the orgasm (on a scale of 1 = poor to 5 = excellent) is given as 4.5.
the intensity of the orgasm (Bohlen, Held, & Sanderson, 1982; Michael, Warburton, Dixon, & Davidson, 1994). The durations of the ms recorded were $M = 35.6$ seconds ($SD = 24.5, N = 11$) (Bohlen, Held, & Sanderson, 1982); $M = 19.9$ seconds ($SD = 12, N = 20$) (Levin & Ver, 1985); $M = 21.9$ seconds ($SD = 6.4, N = 9$) (Carmichael, et al., 1982). Bohlen, Held, and Sanderson (1982) reported, in their small group of 10 participants, a precise correspondence between the start of sm and the onset of regular vaginal contractions, but the end of ms and the end of regular contractions were not observed. For some on, the perceived start of orgasm preceded regular contractions by 2-4 seconds (see report of Masters & Johnson, 1966), described for others it coincided with the contractions, and for an additional p orgasm followed the onset of contractions. Some of this variation 1 depend on how accurate and quickly different respondents can rt on their internal states. Contractions of the pelvic muscles at sm can also be monitored by recording their electromyogram, as was taken by Gillan and Brindley (1979) using suction or fine wire elec- ss in the circumvaginal muscles.

asters and Johnson (1966) confidently proposed that the vaginal ractions would “remove any doubt as to whether a woman is pre- ing or experiencing orgasm” (p. 134), but other authors have noted not all women who claim to experience orgasms show these concl- sions (Bohlen, Held, & Sanderson, 1982; Bohlen, Held, Sanderson, igren, 1982; Kratochvil, 1994; Ladas, Whipple, & Perry, 1982; n et al., 1981; Levine, 1948; Malleson, 1948). It is especially inter- to note in this context that Bohlen, Held, and Sanderson (1982) ed that, although 2 of their 11 participants did not show distinct cular evidence of orgasm, they were not prepared to conclude that biological characteristics were more valid than self-reported percep- s for identifying orgasm. They concluded that, until more data were ected, they would continue their analyses of physiological changes d on subjects’ self-defined orgasms.

Unfortunately, there has been no further detailed analysis of female usms so there is no large body of data from women who have had y vaginal muscular activity recorded during orgasm in order to assess the usefulness of the original contractile pattern classification. re has been little or no advance in the area since these studies in 1980s. The vaginal contractions have been used to objectively track attainment of orgasmic capacity by a single initially anorgasmic subject (Bohlen, Held, Sanderson, & Boyer, 1982).

It should also be noted that, in the account of the muscular activity at sm, there is no mention of the pattern of activity of the involuntary, longitudinal, and circular vaginal smooth muscle during sexual arousal and at orgasm. Indeed, it is not even known whether they are relaxed, contracted, or have a high tonus. One author has interpreted intravaginal balloon recordings from one subject as evidence for an enhanced tonus of the vaginal smooth muscle at arousal (Campbell, 1976). The slow rise in pressure in the vaginal lumen shown in Figure 1 may be due to such an increase in smooth muscle tone rather than that of the circumvaginal striated muscles; nevertheless, no routine, simultaneous recordings have been published with any instrumentation that has definitively separated their contractile activity in a series of women.

Uterine Contractions

In their review on the “after-effects of orgasm,” Kinsey et al. (1953) commented that studies had shown that the “upper end of the uterus goes into rhythmic contractions of considerable frequency whenever there is sexual arousal” (p. 633). Masters and Johnson (1966), however, claimed, “specific uterine patterns do not develop unless the individual study subject undergoes an orgasmic experience that is recognizable both by trained observers and by the individual involved” (p. 116). Uterine motility was one of the physiological measurements that Masters and Johnson attempted, monitored by “intruterine and abdominal electrode placement” (p. 116). Unfortunately, apart from this phrase, no details of the technique were ever published, so we have no idea of the exact placement of the electrodes, their type, or the equipment to which they were attached. The one published orgasmic record from the “intruterine electrodes” (p. 117, Fig. 8-2) is difficult to interpret, as it looks more like an increase in tone of the uterus than a series of contractions. Masters and Johnson claimed that the degree of contraction of the uterus paralleled “the study subject’s subjective and the observer’s objective evaluations of the physical and emotional intensity of the orgasmic experience” (p. 116). Few other investigators have examined uterine contractile function at orgasm. Fox, Wolff, and Baker (1970) used an intruterine pressure transducer in a single subject who had sequentially a nonterminative and then terminative orgasm in the same sexual scenario, and uterine (and vaginal) contractions were recorded during the final orgasm. Caution is warranted in interpreting these conclusions because of the idiosyncratic orgasmic behavior of the subject and the possible artifacts created by the large size and malfunctioning of the intruterine transducer (Levin, 1992). It has been proposed that orgasmic uterine contractions are the terminative signal for sexual arousal in multiororgasmic women (J. M. Davidson, 1980), but, again, caution has been expressed (Levin, 2001). Too few
vestigators have assessed orgasmic uterine contractions to make a definitive statement.

Contractions of the Anal Sphincter

Although voluntary contractions of the anal sphincter can occur during sexual arousal and are sometimes used by women to facilitate or enhance arousal, involuntary contractions of the anus occur only during orgasm (Masters & Johnson, 1966, p. 34). However, few investigations have been published in which measurements of anal contractions have been taken, aside from those of Bohlen and colleagues, who created an anal pressure-measuring device (1979) that could record the ve and contractions of the anal sphincter in both sexes during orgasm (Bohlen, Held, Sanderson, & Ahlbren, 1982). They reported that the al contractions were synchronized with the vaginal contractions, yet waveforms differed (vaginal = square wave, anal = sinusoidal), and use of the anus showed greater variability. Despite the obvious utility of recording the same muscular activity in both men and women at orgasm, little or no use has been made of the device since its creation in the 1980s (Bohlen & Held, 1979). The genital and extragenital changes at occur at or immediately after orgasm are listed in Table 2.

Retrospective Changes

Ectal Congestion and Decongestion

The primary areolae, the usually large pigmented skin area around the nipple of the breasts, contain the follicles of Montgomery (small sebaceous endular structures), occasional hair follicles, an underlying network of smooth muscle of interfacing bundles some 2 nm thick, blood vessels, elastic tissue, melanoblasts, Pacinian corpuscles, nerve fibers, and a nerve exus (Cathcart, Garms, & Garven, 1947-1948; Dickinson, 1949; Winkleman, 1959). The neural basis for areolar sensation was reported by Jones & Turner (1931) to be "typically protopathic or thalamic in its character." Appreciation of the stimulus of cotton wool or testing hairs ceases abruptly at the margin of the specialized pigmented areola area." (p. 778). A later study, Tairych et al. (1989) tested the cutaneous sensitivity of the breasts using Semmes-Weinstein monofilaments to obtain normal values and found that the skin of the superior quadrant was the most sensitive, the areola less sensitive, and the nipple the least sensitive. All areas are less sensitive, the larger the breasts.

Swelling of areolae when the woman is sexually aroused is likely due to both vasocongestion and smooth muscle contraction. The volume expansion can become so marked that the swollen/contracted areolae hide a large part of the base of the erect nipples, making it look like they lose their erection. At orgasm, the loss of volume is so rapid that the areolae become corrugated before becoming flatter. This provides a "visual identification of the female orgasmic experience" (Masters & Johnson, 1966, p. 130). In the absence of an orgasm, the areolar detumescence is much slower, and the corrugation does not develop. There has been minimal study of areolar changes as an indicator that orgasm has taken place. Detailed descriptions of pre- and postorgasmic changes of the areolae have not been fully explored, most likely because they are difficult to monitor, either quantitatively or qualitatively.

Enhanced Postorgasmic Vaginal Pulse Amplitude

Records of changes in the blood supply to the human vagina during sexual arousal to orgasm were made using the photoplethysmographic technique of Palti and Bercovici (1967), with a superior vaginal photoplethysmograph created by Sintchak and Geer (1975). Geer and Quartararo (1976) were the first to publish actual records of the vaginal pulse.
amplitudes (VPA) of the alternating current (AC) trace of each individual heart beat from their luminal, free-dwelling, vaginal photoplethysmograph before, at, and after orgasm in seven young women. Sexual arousal by masturbation caused an increase in the VPA signal compared to the basal values in all participants, but immediately after the end of orgasm VPA was actually significantly greater than before orgasm in five of the even women (71%) and was not significantly less in the other two. The postorgasmic period of maximum amplitude lasts for approximately 10-30 seconds, and then VPA slowly returns to its basal value (see Figure 2). This behavior has been observed in VPA signals recorded in other photoplethysmographic studies of orgasm (Gillan & Brindley, 1979; Henson, Lubin, & Henson, 1982; Levin, 1997; Levin & Wagner, 1980). There have been over 50 papers published using photoplethysmographic recording in the vagina but, unfortunately, these studies never took the induced sexual arousal to orgasm and beyond. Because there are so few photoplethysmographic recordings of the actual pre- and postorgasmic VPA traces published (less than a dozen), its utility as an indicator of orgasm in women is unclear. One basic disadvantage in photoplethysmographic recording during orgasm using luminal free-dwelling instruments is that a many women the vaginal motility and orgasmic contractions can create severe movement artifacts in the records and make interpretation of the TP signals extremely difficult. However, the development and exploitation of a suction photoplethysmograph (Levin et al., 1981) that is attached to the vaginal wall and, thus, moves with the wall would overcome such difficulties and allow interpretable recordings to be taken throughout orgasm. Contemporary collection and computerized processing of the VPA data also uses relatively long time periods (1-3 minutes) during an experiment. Given that the effect is transient and usually only lasts for up to 30 seconds, the response can get lost when calculating overall mean amplitudes. Visual inspection of the data is essential.

Prolactin Plasma Levels After Orgasm

Prolactin is a hormone secreted by the lactotrophic cells of the anterior pituitary gland. Its sequence of 199 amino acids was identified in 1969 (Li, Dixon, Schmidt, Pankov, & Lo, 1969), and it was thought to stimulate lactation as early as the 1920s. Since its sequencing, prolactin has been shown to be involved in a large variety of actions involving over 350 functions and is known to be produced or stored in a variety of cells. Its release from the pituitary lactotrophs is unusual in that it is under tonic inhibitory control by the hypothalamus primarily via the efferent nervous system, although other substances and hormones can inhibit it (e.g., Somatostatin, Endothelin, Acetylcholine) or facilitate

(e.g., VIP, Oxytocin, TRH) its release (Kruger et al., 2002). Prolactin acts on the hypothalamic dopamine neurons to create a negative feedback loop to control its own release, similar to the other anterior pituitary hormones. The receptors for prolactin action are distributed in a variety of tissues (e.g., skin, bone, liver, male and female reproductive organs), but those of essential relevance are in the central nervous system (hippocampus, cortex, amygdala, hypothalamus) in areas known to regulate sexual behavior. A central role for prolactin in modulating sexual behavior and function in animals and in humans is now accepted.

Kruger and colleagues have reported that prolactin secretion is not activated by sexual arousal per se but is specifically activated and doubled in plasma concentration by orgasm, whether generated by masturbation or coitus. This elevation occurs directly after orgasm and is maintained for approximately 60 minutes. Apart from its claimed indicator function for orgasm, the authors proposed that it also acts as a feedback control of sexual drive probably inducing its inhibition (refractory period), especially noted in the male after ejaculation and orgasm (Kruger et al., 2002). Females, of course, do not appear to have this refractory period after only one orgasm and can often undergo a whole series before satiation occurs (Masters & Johnson, 1966). If prolactin is the orgasm-linked "off" switch for sexual arousal in men, why does it not act similarly in women? Less well known, prolactin can also be released by tactile stimulation of the nipples in both women and in men especially when they are sexually aroused (Jacobs & Daughaday, 1974; Kolodney, Jacobs, & Daughaday, 1972). Thus, increase in prolactin.
secretion may be a retrospective signal that orgasm has indeed taken place. Its great disadvantage is the intrusiveness of its measure—it needs the pre-insertion of a butterfly cannula into a vein so that repeated venous samples can be withdrawn. Additional studies need to be undertaken to determine whether prolactin concentrations in other, more easily accessible body fluids, such as saliva, vaginal or cervical fluid, or urine could be used. (See Table 3 for a summary of the prospective, current, and retrospective indicators of female orgasm.)

The Female Prostate, Female Ejaculation, and the G-Spot

In all the areas related to female sexuality, perhaps none have been surrounded with more aura than the concept of the G-spot (named after Grafenberg who reportedly first anecdotally described the phenomenon in Grafenberg, 1950; Ladas et al., 1982). Unfortunately, the popularity of this concept appears to have clouded our ability to make an accurate determination of its existence. To follow is a critical discussion of the scientific evidence for the female prostate, female ejaculation, and the G-spot.

Anatomic evidence from multiple autopsy studies has demonstrated the presence of paraurethral glands (Huffman, 1948; Pollen & Reilinger, 1984; Tepper, Jagirdar, Heath, & Geller, 1984; Zavialov, Rozen, Zajickova, Blazekova, & Oberoslova, 1985). In addition to the presence of these glands, histochemical evidence of prostatic acid phosphatase has been documented. (Pollen & Dreilinger, 1984; Tepper et al., 1984). These reports provide strong evidence for the existence of periurethral glands in the female and for the presence of prostatic acid phosphatase. They also lead to the question of female ejaculation, and whether women expel fluid from their urethra concomitant with orgasm on G-spot stimulation, and what the components of this fluid are.

After the popularization of the term G-spot, the investigators of a number of questionnaire studies reported that a significant number of women acknowledged that they expelled fluid through their urethra at the time of orgasm (Belzer, 1981; Bullough et al., 1984; J. K. Davidson, Darling, & Conway-Welch, 1989), but these reports were anecdotal and did not provide any evidence of the source of fluid. Additionally, the reports were often preceded by the women hearing or being educated about the topic before they gave report of their own situations. This may have provided a suggestion to women that the correct answer was to say that they did ejaculate. There is essentially no scientific evidence to support the belief that women ejaculate with a fluid distinguishable from urine at the time of orgasm (Goldberg, Whipple, Fishkin, Waxman, Fink, & Weisbur, 1983). Laboratory studies (Goldberg et al., 1983; Grafenberg, 1950; Hoch, 1986) have not revealed consistent evidence for any anatomical structure on the anterior vaginal wall, apart form the known paraurethral glands and spongiosal tissue around the urethra, that could create sexually pleasurable sensations when stimulated.

What Triggers Women’s Orgasm?

Women’s orgasms can be induced by erotic stimulation of a variety of genital and nongenital sites. The clitoris and vagina (especially the anterior wall including Halban’s fascia and urethra) are the most usual sites of stimulation, but stimulation of the perirectal glands (Levin, 2001), breast/nipple, or Mons (Kolodny et al., 1974; Masters & Johnson, 1966, p. 54), mental imagery or fantasy (Masters & Johnson, 1966; Whipple, Ogden, & Komisaruk, 1992), and hypnosis (Levin, 1992) have also been reported to induce orgasm. Orgasms have been noted to occur during sleep in the able-bodied (C. Fisher et al., 1983; Kinsey et al., 1953; Wells, 1963), hence consciousness is not an absolute requirement. In the psychiatric literature, rare cases of so-called true “spontaneous orgasm,” in which no obvious sexual stimulus can be ascertained (Polatin & Douglas, 1953), and which are different from the not uncommon “hyperesthesia sexualis” (orgasm following an extremely variable group of tactile, visual, and auditory stimuli) have been described.

Exactly what initiates the orgasm has been a topic of discourse and speculation for many years. Four pseudoneurophysiological models have been proposed. Sherfey’s (1966) model was based on the firing of stretch receptors in the pelvic striated muscles activated by the pelvic engagement, which initiated a spinal reflex. In H. S. Kaplan’s model (1974), the clitoris was the source for the sensory impulses activating the reflex. Mould’s contribution (1980, 1982) was to combine the Sherfey and Kaplan models and incorporate the gamma biasing of the muscle spindles of the striated muscularature, which would then allow the generation of their clonic reflex contractions. Mould’s hypothesized trigger was
e dynamic stretch of the intrasural fibers of the pelvic striated musc es via the alpha-fusimotor systems. Davidson's model, based on male ejaculation/orgasm (J. M. Davidson, 1980), was grandly called the "bipolar hypothesis," but it was, in fact, a "dual bipolar hypothesis." In brief, proposed that when sexual arousal reached a critical level, a hypothetical central "orgasm center," with upward links to the cortex and onward links to activate the smooth and the striated genito-pelvic usculature, was triggered. The neural elements involved in seminal emission and in female uterine contractions fired to contract the smooth muscles and to inhibit arousal, whereas those involved in the contrac tions of the striated muscles caused the sensation of orgasm and its tered state of consciousness.

A more detailed exposition of the J. M. Davidson (1980) male model was tempted by Tuckwell (1989), who explained the well-known refractory period for men after ejaculation/orgasm by a central build-up of neuronal extracellular K+. Women do not experience this inhibited arousability after orgasm, presumably because they do not have the male emission/ejaculation mechanisms. Alternatively, the strong contractions of the uterus at orgasm are thought to be the comparable terminal event in females (J. M. Davidson, 1980). A more recent explanation is that the "switch off" is due to prolactin release. None of the models of orgasm initiation appear satisfactory (Gaber, 1982). Although no new definitive mechanism(s) supported by laboratory-backed data has yet emerged, comparing brain imaging during female sexual arousal without orgasm (Karama et al., 2002; Park, Kang, Soo, Ryu, & Jeong, 2001) to brain imaging at orgasm fers at least the possibility of seeing whether there are any areas of the brain specifically involved in generating the orgasm.

Physiological Aspects of Women's Orgasm

Central Nervous System Control of Women's Orgasm

Studies of animals have provided some insights into the central nervous system (CNS) control of sexual climax and are often the only avenue of information about the neural functions that coordinate the complex systems leading up to and following orgasm. In this section, we will first review the animal models of sexual climax and the brain areas that control genital reflexes. Because there has been very little research on genital function in female animals, studies in males are briefly described and comparisons with females are made. Then, studies of brain imaging during sexual arousal and orgasm are described and comparisons with the animal literature drawn. Next, information about brain disorders in humans is reviewed to provide insight into the function of relevant brain areas. Finally, brain areas that may mediate the inhibitory effects of antidepressant and antipsychotic medication are discussed, as well as the beneficial effects of drug and hormonal treatments.

Animal Models of Orgasm

There are a number of physiological markers that suggest the presence of orgasm in female animals, including increases in blood pressure and heart rate, and uterine contractions during copulation in female rats, rabbits, cattle, and monkeys (McKenna, 1999). Much of the information about the physiological control of orgasm has come from studies of the urethrogenital (UG) reflex in male and female rats. This reflex, elicited by mechanical stimulation of the urethra or by electrical stimulation of certain brain areas, is characterized by a series of muscle contractions similar to those of orgasm in humans (Chung, McVary, & McKenna, 1988). Gerstenburg, Levin, & Wagner, 1990). These contractions result from the coordinated firing of the pelvic, hypogastric, and pudendal motor nerves (Chung, McVary, & McKenna, 1988; McKenna, Chung, & McVary, 1991). In female rats, this reflex includes rhythmic contractions of vaginal and uterine musculature, as well as anal sphincter contractions (McKenna et al., 1991).

Both the UG reflex in rats and orgasm in humans are thought to be controlled in part by a spinal pattern generator (Bors & Comar, 1960; McKenna, 1999; Sipski, 2001; Sipski & Behnagar, 2001). Input to the pattern generator comes primarily from the sensory branch of the pudendal nerve; output is sent via pudendal motor neurons to the ischiocavernosus and bulbocavernosus muscles, the urethral and anal sphincters, and striated muscles of the pelvis (McKenna & Nadelhaft, 1986, 1989; Truitt & Coelen, 2002) and via hypogastric and pelvic nerves to sympathetic and parasympathetic preganglionic neurons.

Brain Areas Controlling Orgasm

Tonic inhibition of the UG reflex. Genital reflexes in animal studies are under tonic inhibitory control by the nucleus paragigantocellularis (nPGi) in the ventrolateral medulla. A majority (78%) of nPGi axons that project to the lumbosacral spinal cord contain serotonin (5-HT) (Marson & McKenna, 1992), suggesting that the lumbosacral cord may be one site where antidepressants of the selective serotonin reuptake inhibitor (SSRI) class act to inhibit orgasm in humans.

Excitatory influences on the UG reflex. The medial preoptic area (MPOA) is a major integrative site for the control of both male and female sexual behavior (reviewed in Hull & Dominguez, 2003). Electri-
or chemical stimulation of the MPOA of anesthetized male or female rats elicited the UG reflex in the absence of genital stimulation and without spinal transection or lesions of the nPGi (Marson & McKenna, 1994; McKenna, 1999). Electrical stimulation also significantly increased vaginal vascular resistance (increased engorgement) in anesthetized female rats and increased their blood pressure (Giuliano et al., 2001). Thus, both sympathetic and parasympathetic influences were evoked by MPOA stimulation, in accord with the integrated nature of e androgens, and orgasmic response. In addition, one group of MPOA neurons fired during preoptic behavior of female rats and a different subset was active during lordosis (Kato & Sakuma, 2000). Therefore, different neurons within the preoptic area appear to promote the male’s sexual motivation and her receptive posture.

The MPOA does not send axons directly to the spinal cord but connects with the nPGi (Murphy, Rizvi, Ennis, & Shipley, 1999), which it presumably inhibits. In addition, the MPOA has reciprocal connections with the paraventricular nucleus (PVN) of the hypothalamus and the anterior prefrontal cortex (PAG) of the midbrain (Murphy et al., 1999; Merly & Swanson, 1988). The PVN is an integrative site for the sym pathetic nervous system (Swanson & Sawchenko, 1980). It also contains neurons that release oxytocin into the general circulation via the posterior pituitary and project to the lumbosacral spinal cord of male and male rats (Wagner & Clemens, 1991) and to the hippocampus (Melis, Ancampiano, & Argiolas, 1992). Systemic oxytocin stimulates smooth muscle contractions, including those of the uterus.

The PAG consists of columns that subserve autonomic functions, pain perception, and female rat sexual behavior (Ogawa, Kow, McCarthy, Aff, & Schwartz-Giblin, 1991). It receives input from the MPOA and the area of the spinal cord in which the pudendal and pelvic nerves terminate (van der Horst & Holstege, 1998), and it sends output to the clitoris and penis (Marson, 1995; Marson, Latt, & McKenna, 1993). The PAG also sends presumably inhibitory input to the nPGi (Holstege, 1991). Thus, the MPOA can inhibit the PGi both directly and via its outputs to the PAG.

a Oragnism-Related Circuit

The first study of brain activation in women during sexual arousal used blood-level-dependent functional magnetic resonance imaging (fMRI) during erotic or neutral visual stimuli (Karama et al., 2002). All six women reported moderate sexual arousal in response to erotic film but not to the neutral film. Areas of greatest activation included the inferior temporal lobe, anterior cingulate gyrus, insular cortex, corpus callosum, thalamus, caudate nucleus, globus pallidus, and inferior frontal lobe. These areas are similar to those previously reported to be activated in men, although the men showed primarily unilateral activation (Stoleru et al., 1999).

In a second study using BOLD fMRI Karama et al., (2002) compared activation in 20 female and 20 male undergraduates who were presented visual erotic or neutral stimuli. Male students reported greater sexual arousal in response to the erotic film than did female students. Both male and female subjects showed increased bilateral activation in five cortical areas: the medial prefrontal cortex, the orbitofrontal cortex, the anterior cingulate cortex, the insular cortex, and the occipitotemporal cortex. In addition, both sexes showed bilateral activation of the amygdala and the ventral striatum. However, only males showed significant activation of the hypothalamus and the thalamus, although there was a nonsignificant trend toward activation of the hypothalamus in women. The only significant sex difference in activation was in the hypothalamus. However, when perceived sexual arousal was used as a covariate, the sex difference in hypothalamic activation was not significant. Thus, the lower level of perceived arousal in women was associated with lower hypothalamic activity. Several of the cortical and subcortical areas that were activated during sexual arousal have been associated with sexual arousal. These include the opercountotemporal (or inferior temporal) area, medial prefrontal cortex, and amygdala (Lane, Reiman, Ahern, Schwartz, & Davidson, 1997; Morris et al., 1996; Whalen et al., 1998). Activity in both the orbitofrontal cortex and ventral striatum have been associated with the presentation of rewards (Francis et al., 1999). The anterior cingulate gyrus has been associated with autonomic and emotional processing (Stoleru et al., 1999) and goal-directed behavior (Devinsky, Morrell, & Vogt, 1995).

The first studies of brain imaging (positron emission tomography, PET, coupled with MRI) during orgasm in women have recently been reported (Komisaruk et al., 2002; Whipple & Komisaruk, 2002). Two women with spinal cord injury (SCI) above the 10th thoracic segment (T10; i.e., at or above the level at which the hypogastric, pelvic, and pudendal nerves enter the spinal cord), as well as one noninjured woman, showed increased activation at orgasm, compared to pre-orgasm, of the paraventricular nucleus (PVN) of the hypothalamus, the central (or periventricular, PAG) gray of the midbrain, the amygdala, the hippocampus, anterior basal ganglia (striatum), cerebellum, and several regions of cortex, including the anterior cingulate, frontal, parietal, temporal, and insular cortices (Komisaruk et al., 2002). During self-stimulation preceding orgasm, there was significant activation of the nucleus of...
e solitary tract (NTS, in the medulla), which receives sensory input from the vagus nerve, as well as of somatosensory and motor cortices, alamus, and sensory areas of the spinal cord and medulla. Several of these areas activated in women with SCI have previously been associated with orgasm, epileptogenic orgasmic aura, or sexual arousal in humans, eluding the prefrontal cortex (especially the right side: see Tiibonen et al., 1994), anterior cingulate cortex (Childress et al., 1999), amygdala (Ancaud et al., 1970; Childress et al., 1999; Heath, 1972; Janszky et al., 2002), and temporal and insular cortex (Janszky et al., 2002).

A comparison of the areas activated by orgasm (Komisaruk et al., 2002) with those activated during sexual arousal without orgasm (Aramo et al., 2002; Komisaruk et al., 2002; Park et al., 2001) reveals veral differences. The most important appear to be the activation of the VN, the PAG, the hippocampus, and the cerebellum with orgasm but not visual erotic stimuli. The PVN, as noted previously, is an important tegretive site for the sympathetic nervous system and supplies oxytocin to the peripheral circulation, via the posterior pituitary, and to the lumbo-sacral spinal cord. The central gray (PAG) receives and integrates autonomic input from the MOPOA and PVN and appears to inhibit the nPGI in Ixs, thereby disinhibiting sexual reflexes. The roles of the hippocampus in the elicitation of orgasm are unknown.

Intral Effects of Drugs on Women's Orgasm

Serotonin. Selective Serotonin Reuptake Inhibitors (SSRIs) are noted for their inhibitory effects on orgasm/ejaculation and libido (reviewed in Olsen, Lane, & Menza, 1999). However, fewer inhibitory side effects are seen in women than in men (Olesen, 2001; Kavoussi, Segraves, 1997; Winder, Ascher, & Johnston, 1997; Modell, Katholi, Modell, & DePalma, 1997; Shen & Hsu, 1995). (See Table 4 for a summary of effects on orgasm of centrally acting drugs.) Bupropion is a weak inhibitor of serotonin and norepinephrine transport and a potent inhibitor of dopamine transport, as well as an agonist at 5-HT_1A receptors; both the increase in extracellular dopamine and the stimulation of 5-HT_1A receptors may explain its lower incidence of sexual side effects (Ascher et al., 1995). Furthermore, this profile of effects suggests a similarity with the elation of ejaculation in male rats and monkeys by 5-HT_1A receptors. Whether the inhibition of the lordosis posture in female rats by these receptor subtype. Nefazodone also has a lower incidence of sexual side effects, perhaps because it is a 5-HT_2 antagonist, as well as an SSRI (Oles et al., 2002; Feiger, Kiefer, Shrivastava, Wisselink, & Willcox, 1996; Montego, Iloca, Izquierdo, & Rico-Villademoros, 2001). Stimulation of 5-HT_4 receptors has been reported to inhibit the release of both norepinephrine and dopamine from several brain areas (reviewed in Alcantara, 1999). Because dopamine and norepinephrine facilitate sexual behavior (see below), the increase in serotonergic activity at 5-HT_1A receptors could explain some of the inhibitory effects of SSRIs on orgasm (Alcantara, 1999; Segraves, 1995). Nefazodone (a monoamine oxidase A inhibitor, which would increase levels of both 5-HT and norepinephrine) and aminepine (a dopamine transport inhibitor) are also antidepressants with a lower incidence of anorgasmia than the SSRIs (Kennedy, Eisfeld, Dickens, Bacchiocchi, & Bagby, 2000; Montego-Gonzalez et al., 1997; 2001). Indeed, there is a single case report of hyperorgasmia in a woman taking nefazodone (Lauher, 1995). Therefore, the coordinated increases in either norepinephrine or dopamine appear to offset the inhibitory effects of serotonin on orgasmic ability.

Noradrenergic activity may also improve the profile of effects of the antidepressant mirtazapine. It inhibits alpha_2 autoreceptors on norepinephrine terminals and also alpha_2 heteroreceptors on 5-HT terminals (Stumme et al., 1997). As a result both norepinephrine and 5-HT levels are increased. It is also an antagonist at postsynaptic 5-HT_2 and 5-HT_3 receptors (Stumme, Dopchelke, & Stahl, 1997). A prospective, 12-week, open-label trial with 18 women reported a 48% improvement of ease and satisfaction with orgasm (Boyarsky, Haque, Rouleau, & Hirschehild, 1999). However, 50% of the participants dropped out of the study, suggesting that other side effects outweighed the improved orgasmic ability in some women.

Among the typical SSRIs, there may also be differences in inhibition of orgasm. Paroxetine delayed orgasm more than fluvoxetine, fluoxetine, and sertraline (Montego-Gonzalez et al., 1997) and more than nefazodone, fluoxetine, and venlafaxine (Bobes et al., 2002). One explanation for this greater impairment may be that paroxetine is a more potent inhibitor of the serotonin transporter than are fluoxetine and fluvoxetine, and does not inhibit the dopamine transporter, as does sertraline and, to a lesser degree, fluoxetine and fluvoxetine (reviewed in Olsen, Lane, et al., 1999). As discussed subsequently, dopamine antagonists impair several aspects of sexual function, whereas the dopamine precursor, L-Dopa, is facilitative. Both women and men treated with fluoxetine, paroxetine, and sertraline for anxiety disorders reported delays in reaching orgasm and decreased quality of orgasm at 1- and 2-month follow-ups (Labbate, Grimes, Hines, Oleshansky, & Arana, 1998). However, the impairments in the fluoxetine group (but not the other two groups) had abated by the end of the third month. There have been
epilepsy were not significantly different from either of the other two
epilepsy groups for any of the 11 variables measured. The authors noted that
these findings suggest that antiepileptic drugs may have a role in the treatment of
women with epilepsy. They also noted that further research is needed to
understand the mechanisms underlying the observed differences in the
effects of antiepileptic drugs on sexual function in women with epilepsy.

Table 4
Effects of Centrally Active Drugs on Orgasm

<table>
<thead>
<tr>
<th>Authors, Year</th>
<th>Design</th>
<th>N</th>
<th>Drugs</th>
<th>Conclusion</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bologa et al. 2002</td>
<td>Prospective, open-label; 6 month tx</td>
<td>58 women, 43 men</td>
<td>Nefazodone, fluoxetine, paroxetine, venlafaxine</td>
<td>Orgasm improvement with nefazodone and orgasm impairment with paroxetine in women</td>
<td>Semi-structured interview before and after tx, Bristol Myers Squibb as sponsor</td>
</tr>
<tr>
<td>Boulay et al. 1999</td>
<td>Prospective, open-label, flexible dosing, 12 weeks</td>
<td>18 women, 7 men</td>
<td>Mirtazapine</td>
<td>Base/satisfaction with orgasm improved 48% with mirtazapine compared to baseline; 50% dropout rate</td>
<td>Questionnaires administered bi-monthly</td>
</tr>
<tr>
<td>Coleman et al. 2001</td>
<td>Multicenter, randomized double-blind; 48 weeks</td>
<td>288 women, 108 men</td>
<td>Bupropion SR, fluoxetine</td>
<td>30% of fluoxetine-treated patients had orgasm dysfunction; bupropion SR- and placebo-treated patients had 10%</td>
<td>Weekly questioning by physician</td>
</tr>
<tr>
<td>Feiger et al. 1996</td>
<td>Prospective, randomized, 8 weeks</td>
<td>148 men and women</td>
<td>Sertraline, nefazodone</td>
<td>Sertraline impaired orgasm in both men and women equally; nefazodone had no negative effects</td>
<td>Sexual function questionnaire</td>
</tr>
<tr>
<td>Kavouni et al. 1997</td>
<td>Prospective, randomized, double-blind, parallel group; 16 weeks</td>
<td>119 women, 129 men</td>
<td>Bupropion, sertraline</td>
<td>Orgasm dysfunction more common with sertraline compared to bupropion</td>
<td>Investigator-conducted interview at each office visit</td>
</tr>
<tr>
<td>Kennedy et al. 2000</td>
<td>Prospective, 8 or 14 weeks</td>
<td>65 women, 42 men</td>
<td>Paroxetine, sertraline, moxidone, venlafaxine</td>
<td>No difference between women and men for orgasm impairment; paroxetine and sertraline produced more dysfunction than moxidone and venlafaxine in women</td>
<td>Sexual functioning questionnaire before and after antidepressant</td>
</tr>
</tbody>
</table>

WOMEN'S ORGASM

136 C. MESTON R. LEVIN M. SUPSKIE HILL, & J. HEILMAN
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Design</th>
<th>N</th>
<th>Drugs</th>
<th>Conclusion</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lobbate et al. (1998)</td>
<td>Prospective; 3 months</td>
<td>19 women, 12 men with anxiety disorder; 18 women, 12 men with depression</td>
<td>Fluoxetine, sertraline, paroxetine</td>
<td>Decreased quality and longer delay in orgasm compared to baseline; anorgasmia more common in women than in men; similar effects of all 3 drugs</td>
<td>Descriptive, monthly rating on visual analog scales</td>
</tr>
<tr>
<td>Lauerman (1995)</td>
<td>Retrospective reports</td>
<td>1 woman</td>
<td>Moclubemide</td>
<td>Hyperorgasmia with this MAO-A inhibitor (increased 5-HT and norepinephrine)</td>
<td>Single case, patient report</td>
</tr>
<tr>
<td>Michelson et al. (2001)</td>
<td>Multicenter, prospective; Acute phase: open-label 15 weeks; Continuation phase: randomized, double-blind, 25 additional weeks</td>
<td>342 women, 159 men</td>
<td>Fluoxetine</td>
<td>Acute phase: 44% of women reported improvement in orgasmic ability, 38% reported no change, 18% reported orgasmic impairment proportional to depressive symptoms</td>
<td>Self-rated, 4-question before, at end of acute phase, and weekly in continuation phase; Eli Lilly as sponsor</td>
</tr>
<tr>
<td>Modell et al. (1997)</td>
<td>Retrospective; open-label; patient population</td>
<td>57 women, 49 men</td>
<td>Bupropion, fluoxetine, paroxetine, sertraline</td>
<td>Greater duration and intensity of orgasm with bupropion; no trend toward increased time to orgasm; fluoxetine and paroxetine decreased orgasm, increased time to orgasm, and produced a n trend to decreased duration of orgasm; sertraline decreased duration of orgasm, increased time to orgasm, and produced a trend to decreased intensity of orgasm</td>
<td>Descriptive, anonymous questionnaires mailed to patients in practices taking antidepressants; variable return rate</td>
</tr>
</tbody>
</table>

Table 4 continued on following page.
Table 4
Effects of Centrally Active Drugs on Orgasm (continued)

<table>
<thead>
<tr>
<th>Authors(s), Date</th>
<th>Design</th>
<th>N</th>
<th>Drugs</th>
<th>Conclusion</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hummer et al. (1999)</td>
<td>Prospective open-label, ongoing tx; assessed weekly during first 6 weeks and monthly thereafter</td>
<td>37 women, 116 men</td>
<td>Haloperidol, clonazepam</td>
<td>0/12 women taking haloperidol reported orgasmic dysfunction, compared to 8/41 men (19.5%); 12/52 women (4%) taking clonazepam reported orgasmic dysfunction, compared to 17/25 men (68.0%); fewer women reported dysfunction; no difference between drugs; authors note women may have underreported effects</td>
<td>Observer-rated side effect rating scale</td>
</tr>
<tr>
<td>Phosphodiesterase inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. R. Berman et al. (2001)</td>
<td>Prospective open-label; 6 weeks</td>
<td>48 women; SAD<sup>a</sup></td>
<td>Sildenafil</td>
<td>67% improved orgasmic ability</td>
<td>Questionnaire at baseline and end of study; psychological measures</td>
</tr>
<tr>
<td>L. A. Berman et al. (2001)</td>
<td>Prospective open-label; 6 weeks</td>
<td>7 women with history of sexual abuse; 24 with no such history</td>
<td>Sildenafil</td>
<td>27/7 with history of CSA<sup>a</sup> reported improved orgasmic ability; 19/24 with no such history CSA improved</td>
<td>5-item questionnaire at end</td>
</tr>
<tr>
<td>Caruso et al. (2001)</td>
<td>Prospective double-blind, crossover; 12 weeks</td>
<td>51 premenopausal women; arousal disorder</td>
<td>Sildenafil</td>
<td>25 and 50 mg sildenafil increased orgasm frequency, compared to placebo and baseline; placebo increased orgasm relative to baseline</td>
<td>Self-administered questionnaire, once/week</td>
</tr>
<tr>
<td>Kaplan et al. (1989)</td>
<td>Open-label non-randomized; 12 weeks</td>
<td>20 postmenopausal women</td>
<td>Sildenafil</td>
<td>Orgasm satisfaction improved 7.4%</td>
<td>Self-administered questionnaire</td>
</tr>
<tr>
<td>Antihypertensives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulsitt et al. (1989)</td>
<td>Retrospective questionnaire</td>
<td>1,080 women, 1,285 men</td>
<td>Hydralazine, beta-adrenergic antagonists, methyldopa</td>
<td>Women showed no increased difficulty achieving orgasm with any of the drugs</td>
<td>Self-administered questionnaire Table 4 continued on following page</td>
</tr>
</tbody>
</table>

Table 4
Effects of Centrally Active Drugs on Orgasm (continued)

<table>
<thead>
<tr>
<th>Authors(s), Date</th>
<th>Design</th>
<th>N</th>
<th>Drugs</th>
<th>Conclusion</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duncan et al. (2000)</td>
<td>Ambulatory medical record-based choice of subjects; case-control</td>
<td>104 mildly hypertensive women, 107 nonmedicated healthy controls</td>
<td>ACE inhibitors, beta-adrenergic blockers, calcium channel blockers, diuretics, combination drugs</td>
<td>No difference b/w medicated and unmedicated hypertensives; impaired orgasm in hypertensive compared to healthy women; less orgasm frequency in smokers compared to nonsmokers (not associated with age or hypertension)</td>
<td>Self-administered questionnaire and phone interview</td>
</tr>
<tr>
<td>Grimm et al. (1997)</td>
<td>Prospective randomized, controlled, double-blind; 48 months</td>
<td>345 women, 567 men</td>
<td>Atenolol, amiodipine maleate, chlorothalidone, doxazosin maleate, enalapril maleate</td>
<td>Women showed no increased difficulty achieving orgasm with any of the drugs</td>
<td>Questioning by physician at baseline and annually during tx</td>
</tr>
<tr>
<td>Anticonvulsants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duncan et al. (1997)</td>
<td>Retrospective</td>
<td>243 women</td>
<td>AED<sup>b</sup></td>
<td>159 epileptic women taking AEDs; less orgasm satisfaction compared to 48 healthy controls</td>
<td>Validated questionnaire & testosterone assay</td>
</tr>
<tr>
<td>Anticholinergics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wagner & Levin (1980)</td>
<td>Controlled laboratory study</td>
<td>11 women</td>
<td>Atropine, methylcyclizine</td>
<td>Neither tx affected orgasm or vaginal blood flow; muscarinic cholinergic receptors do not appear important for orgasm or blood flow</td>
<td>Controlled laboratory study</td>
</tr>
<tr>
<td>Estrogens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eicher & Muck (1996)</td>
<td>Prospective open-label; 4 months</td>
<td>188 women with sexual dysfunction</td>
<td>Estradiol transdermal patch</td>
<td>25% improved orgasmic ability</td>
<td>Uncontrolled clinical study Table 4 continued on following page</td>
</tr>
</tbody>
</table>

^a CSA: childhood sexual abuse; SAD: sexual abuse; AED: antiepileptic drug.
Table 4

<table>
<thead>
<tr>
<th>Author(s), Year</th>
<th>Design</th>
<th>N</th>
<th>Drugs</th>
<th>Conclusion</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kocu et al. (2000)</td>
<td>Prospective single-blind, 1 year</td>
<td>50 post-menopausal women</td>
<td>HRT, tubolone</td>
<td>No improvement in orgasm frequency (tubolone has estrogenic, androgenic & metabolites)</td>
<td>Questionnaire at baseline and after 1 year</td>
</tr>
<tr>
<td>Nathorst-Boos et al. (1999)</td>
<td>Retrospective clinical study</td>
<td>66 oophorectomized, 35 hysterectomized with ovaries</td>
<td>ERT</td>
<td>No improvement in orgasmic ability in 33 oophorectomized women, compared to 33 oophorectomized no-ERT women</td>
<td>Questionnaire and structured interview</td>
</tr>
<tr>
<td>Wu et al. (2001)</td>
<td>Prospective open-label, 3 months</td>
<td>48 post-menopausal women</td>
<td>HRT, tubolone</td>
<td>Tibolone improved orgasmic ability compared to HRT</td>
<td>Questionnaire at end of 3 months</td>
</tr>
<tr>
<td>Androgens</td>
<td>Munarriz et al. (2002)</td>
<td>Retrospective open-label, clinical tx; minimum 3 months</td>
<td>113 women w/ low T & dehydroepiandrosterone (DHEA)</td>
<td>Greater orgasm frequency after DHEA tx; both DHEA and T increased to upper range of normal female levels</td>
<td>Questionnaires and blood samples for hormone levels</td>
</tr>
<tr>
<td>Sherwin & Gelfand (1987)</td>
<td>Prospective open-label; 1 month (no hormone injection 8 weeks pre-baseline)</td>
<td>44 oophorectomized and hysterectomized women</td>
<td>E (0.5 mg) + T (150 mg), E alone (10 mg), no tx</td>
<td>Orgasm and coitus rates higher in E + T groups during first 3 weeks after monthly injection, compared to E or no tx and compared to baseline</td>
<td>Daily recording & hormone assays at baseline and days 2, 4, 8, 15, 21, and 28 of tx</td>
</tr>
<tr>
<td>Shifren et al. (2000)</td>
<td>Prospective double-blind, counterbalanced; 9 months</td>
<td>75 oophorectomized and hysterectomized women</td>
<td>Conjugated E plus either T (150 or 300 mg/d transdermal) or placebo</td>
<td>300 mg/d of T improved orgasm pleasure and frequency of sexual activity</td>
<td>Questionnaire & sexual function and diary completed by phone</td>
</tr>
</tbody>
</table>

The former, single-blind study of 50 women found no effect of either treatment, based on a questionnaire at baseline and after 1 year. In the latter, open-label study of 48 women a significant improvement after 3 months of tibolone treatment, but not HRT, was found.

Androgens. Sherwin and Gelfand (1987), in a prospective, 3-month, open-label study of 44 oophorectomized and hysterectomized women, found that a monthly injection of estrogen and testosterone (E+T) increased the rates of orgasm during the first 3 weeks after injection compared to these women's own baseline and compared to E-alone or no treatment. The E+T-treated women had been receiving monthly hormone injections for up to 2 years but had not received an injection for 8 weeks prior to the baseline measure. At the time of the baseline interview and hormone sample, these women reported relatively low rates of coitus and orgasm, although their T levels were at least four times the normal levels of gonadally intact premenopausal women (based on normal ranges from Endocrine Sciences reported in Shifren et al., 2000). Therefore, the T from the previous injection 8 weeks before baseline measures had been metabolized rather slowly. These data suggest that, although extremely high levels of T can improve sexual interest and orgasmic ability, more moderate levels have little effect.

In a more extensive and well-controlled study of 75 oophorectomized and hysterectomized women, Shifren et al., (2000) obtained similar results. Conjugated estrogens were administered either alone or with 150 or 300 mg T per day in transdermal patches. The higher dose of T improved orgasm pleasure. However, again, the effective T levels were two to six times the normal range in intact women. Finally, 113 women with low levels of both T and dehydroepiandrosterone (DHEA) and complaints of orgasmic difficulty were treated for at least 3 months with DHEA (50 mg/day orally; Munarriz et al., 2002). These women reported a greater frequency of orgasm after treatment than before. Their T and DHEA levels were in the upper half of the normal range at the end of the 3-month treatment. Unfortunately, there was no control treatment, and the study was an open-label one.

Spinal Cord Pathways Involved in Women's Orgasm

Our ability to assess the impact of spinal lesions on orgasm in humans is unique because spinal cord lesions are relatively easily located and described via detailed neurologic exam. Thus, the subject of female orgasm and the impact of spinal cord injuries (SCIs) on damage has received significant attention in recent years, and the level and degree of evidence for this phenomenon has increased greatly. Once flippantly considered "phantom" (Money, 1960), the orgasmic experiences of women with SCIs have recently been described through multiple controlled studies that have consistently proven the existence of orgasm in women with SCIs. Moreover, the researchers conducting these studies have begun to describe the attributes of orgasms in women with SCIs. In Table 5 the notable studies that have assessed the impact of orgasm in humans with SCIs are summarized. As the studies are numerous, only details regarding those reports that are most significant will be discussed.

In the early 1990s, interest in the impact of SCIs on female sexuality and sexual response re-emerged after previous discussion of "phantom orgasms." During this time, a number of questionnaire studies were published with large sample sizes (Charifue, Gerhart, Menter, Whiteneck, & Manley, 1992; Harrison, Glass, Owens, & Soni, 1995; Kett et al., 1991; Kreuter, Sullivan, & Siosteen, 1996; Siosteen, Lundquist, Blomstrand, Sullivan, & Sullivan, 1990; Sipski & Alexander, 1993), and accompanying neurologic data were often included (Charifue et al., 1992; Kett et al., 1991; Kreuter et al., 1996; Siosteen et al., 1990; Sipski & Alexander, 1993). Although some studies still suffered from a lack of controls (Charifue et al., 1992; Siosteen et al., 1990), others included pre- and postinjury data as a form of control (Harrison et al., 1995, Kett et al., 1991; Sipski & Alexander, 1993). These studies documented that women with SCIs did experience orgasms and that, in general, approximately 50% of the women noted the ability to attain orgasm was present postinjury. Similar findings were also noted in the largest study of females with SCI to date. In a multicenter study, Jackson and Wadley (1999) reported on 478 participants. Of these, 315 were sexually active since their injuries and of this subgroup 54% reported achieving orgasm postinjury.

The next advance in the study of orgasm in women with SCIs was the result of the introduction of the laboratory-based assessment of women's orgasmic capacities. Sipski, Alexander, and Rosen (1995) studied 25 women with SCIs at and above the level of T6 using standardized criteria (American Spinal Injury Association, 1992) and compared them with 10 age-matched, able-bodied control women. They were given 75 minutes to perform self-stimulation to orgasm in any way they chose. All able-bodied women achieved orgasm, compared to only 52% of SCI women. Degree and type of SCI were not found related to the SCI woman's ability to achieve orgasm. Orgasmic SCI women scored higher on the sexual information and sexual drive components of the Derogatis Sexual Functioning Inventory (DSFI, 1978).

Sixteen women with SCIs at and below the level of T6 were studied, along with five able-bodied control women (Whipple, Gerdes, & Komisaruk, 1996). The women used a modified tampon to stimulate their
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Design</th>
<th>N</th>
<th>Conclusion</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berard (1989)</td>
<td>Interview supplemented with access to medical records and information regarding their genital sexual response to intimate washing</td>
<td>15 women with SCI, no controls</td>
<td>Provided anecdotal information on how sexual response might be affected in women with SCIs at various levels and degrees of injuries</td>
<td>Anecdotal information</td>
</tr>
<tr>
<td>Bregman & Hadley (1975)</td>
<td>Semistructured interviews, no neurologic data</td>
<td>31 women with SCI, no controls</td>
<td>2 reported orgasm unchanged, 22 reported some sensation of orgasm "very similar to those of able-bodied women"</td>
<td>Uncontrolled questionnaire</td>
</tr>
<tr>
<td>Charlifue et al. (1992)</td>
<td>Telephone survey with neurologic data</td>
<td>283 subjects identified, 231 SCI women, no controls</td>
<td>Approximately half of the women reported they had experienced orgasm since their injuries, stimulus generally genital or genital combined with breast</td>
<td>Uncontrolled questionnaire</td>
</tr>
<tr>
<td>Comarr & Vigue (1978)</td>
<td>Presented series of case reports on women with SCIs who were neurologically examined and counseled regarding their sexuality</td>
<td>21 women with SCI, no controls</td>
<td>1 cervical incomplete, 2 thoracic, and 3 women with lumbar injuries reported they were orgasmic</td>
<td>Case reports</td>
</tr>
<tr>
<td>Fitting et al. (1978)</td>
<td>29-item questionnaire, brief taped interview and self-reported neurologic information</td>
<td>24 women with SCI or disease, no controls</td>
<td>6 subjects orgasmic</td>
<td>Uncontrolled questionnaire</td>
</tr>
<tr>
<td>Harrison (1995)</td>
<td>Mailed questionnaire, no neurologic data</td>
<td>Sent to 225 women, 85 answered</td>
<td>Pre-injury 46% were orgasmic, postinjury 26% were orgasmic, 7% were not orgasmic pre-injury compared to 23% post, 33% reported this question was NA pre-injury and 12% post, 14% did not pre-injury and</td>
<td>Pre/post questionnaire</td>
</tr>
</tbody>
</table>

Table 5 (continued on following page)
cervix and vagina at monitored and specified levels of pressure. Three women with complete SCIs and one able-bodied woman had orgasms under these conditions; one for the first time. Based upon these data and other animal reports (Komisaruk et al., 1996; Ortega-Villalobos et al., 1990) the authors hypothesized that the vagus nerve conveys a sensory pathway from the cervix to the brain that is responsible for the preservation of the ability to achieve orgasm in women with SCIs.

More recently, Sipski et al. (2001) expanded their study of orgasm to include women with all levels of injuries. The methodology used was identical to that in a previous study (American Spinal Injury Association, 1992). Thus, the data were combined. A total of 66 women with SCIs and 21 able-bodied controls were examined. Women with complete lower motor neuron injuries affecting their S2-S4 reflex arc were significantly less likely than other women to achieve orgasm. Overall, 55% of all SCI women reported orgasmic ability post-SCI, whereas 44% were orgasmic in the laboratory. Women with SCIs took significantly longer (26.37 minutes) than able-bodied women (16.33 minutes) to achieve orgasm. Blood pressure, heart rate, and respiratory rate responses were similar between able-bodied and SCI women throughout the study. Moreover, subjective descriptions of sensations during orgasm were indistinguishable between able-bodied and SCI women. These authors reported the importance of an intact sacral reflex arc in the ability to achieve orgasm. Moreover, the presence of the urogenital reflex in spinalized rats (Marson & McKenna, 1994; McKenna, Chung, & McVary, 1991), which mimics orgasm in humans, provides an animal model that is consistent with this hypothesis.

Overall, there is a strong evidence for the occurrence of orgasm in women with SCIs. There is also substantial evidence of the impact of specific injuries on orgasmic potential. Future human and animal studies are warranted to confirm the specific effects of spinal lesions on the ability to achieve orgasm. Women with spinal disorders other than SCIs would also be appropriate to study.

Peripheral Nervous System Involvement in Women’s Orgasm

In brief, the nervous supply of the genitalia is by the sympathetic and parasympathetic branches of the autonomic nervous system pelvic nerves, hypogastric nerve, paravertebral sympathetic chains, and by somatic nerves (pudendal nerve from the pelvic splanchnic branches and sacral plexus). The nerves are either efferents, which convey nerve impulses from the brain and spinal cord to control motor, secretory, and vascular functions, or afferents, which mediate sensation, usually by specialized nerve endings. The autonomic nerves regulate blood flow...
and the involuntary smooth muscle, whereas the somatic nerves control the voluntary or striated muscles. Sensory nervous traffic can be mediated by both the somatic and autonomic systems. The nerves release a number of neurotransmitters, classically noradrenaline at the sympathetic nerve endings and acetylcholine at the parasympathetic and somatic. However, the former two systems become mixed in the pelvic plexus and, with the recognition of nonadrenergic, noncholinergic NANC nerves, many different transmitters and neuropeptides exist and are co-localized. Much of this knowledge comes from animal studies, usually rodent (rabbit/rat) studies; genital data from women are sparse. Although the studies using immunohistochemical techniques to identify and to localize the various neurotransmitters give some insights to what structures are innervated and by what chemicals, unfortunately, they do not give any information about the exact functions of the nerves/neurotransmitters, and, therefore, some degree of informed speculation has to be applied. Their proposed actions, together with those of secreted hormones, bring about the peripheral changes observed in sexual arousal and at orgasm.

Vagina

The anterior wall of the vagina, the area with the highest erotic sensitivity, has a denser innervation than the posterior wall, and the distal area has more nerve fibers than the proximal (Hilleges, Falconer, Kman-Ordeberg, & Johansson, 1995). According to Krantz (1958), aggregated ganglion cells and nerve fibers were present in the adventitia surrounding the vagina. The fibers, filiform in shape, penetrated and applied the muscularis and larger blood vessels. Hoyle, Stones, Robinson, Whitely, and Burnstock (1996) showed that nerves were also closely applied to the papillary capillaries and were possibly "sensorimotor" nerves (sensory nerves stimulated by antidromic impulses, giving them an efferent function).

The unaroused human vagina has a low (acid) surface pH, minimal surface fluid, low blood flow, and low surface pO2. A good sympathetic fibre is probably maintaining this low flow by its constricting effect on the blood supply. Oral administration of the alpha-adrenoceptor blocker entomeline to premenopausal women increased their vaginal blood w indicative of a basal constrictive adrenergic tone, but whether the drug acted centrally or peripherally or both is unclear (Rosen, Phillips, Sdrano, & Ferguson, 1999).

Effective sexual arousal causes a rapid increase in the blood flow mediated by the release of Vasoactive Intestinal Peptide (VIP) from tNC-nerve endings, and Neuropeptide Y (NPY) probably constricts the venous drainage creating engorgement. The increased hydrostatic pressure in the capillaries forces a protein poor, plasma-like fluid into the tissues spaces, which then percolates through the Na+-absorbing epithelium onto the surface of the vagina as the increased surface fluid lubrication (Levin, 1999b). This neurogenic transudate (pH 7.4) can partially neutralize the acidity of the basal surface vaginal fluid (pH 4-6) and thus raise the vaginal pH (Wagner & Levin, 1984). The enhanced blood flow increases the vaginal surface pO2, facilitating the use of aerobic rather than anaerobic mechanisms to generate energy by any sperm when ejaculated into the vagina (see Levin, 1992, 1999a, 1999b for references). Laan et al. (2002) provided evidence for a facilitatory effect of sildenafil (an inhibitor of phosphodiesterase 5, PDE5 influences male genital blood flow by controlling the level of cyclic GMP and nitric oxide [NO]) on vaginal photoplethysmograph measures of sexual arousal. Masten and Worcel (2002) demonstrated a beneficial influence of the nitric oxide precursor L-arginine in combination with the alpha2 blocker yohimbine on genital engagement in postmenopausal women. These findings lend support for a role of NO in the enhancement of vaginal blood flow, although very little nitric oxide synthase (NOS) has been found in the vagina using immunohistochemistry (Hoyle et al., 1996).

Meston and colleagues provided evidence for a facilitatory role of peripheral adrenergic activation on sexual arousal in women. Ephedrine (50 mg), an alpha and beta adrenergic agonist, facilitated vaginal photoplethysmograph measures of sexual arousal (Meston & Heiman, 1998), and clonidine, an alpha2 adrenergic agonist, which blocks peripheral sympathetic outflow, decreased these responses (Meston, Gorzalka, & Wright, 1997). Increased sympathetic nervous system activity, induced via intense acute exercise, enhanced vaginal engorgement in women (Meston & Gorzalka, 1995, 1996a, 1996b).

The pattern and density of innervation of the vaginal vasculature and microvasculature was described by Hoyle and colleagues (1996) using immunohistochemistry in surgical specimens taken from five pre- and five postmenopausal women. They identified a number of neuropeptides in the papillae, subepithelial plexus, propria arteries and veins, and the deep arteries and veins. These included NPY, VIP, calcitonin gene-related peptide (CGRP), Substance P (SP), and the enzyme NOS. The vasomotor properties of VIP (vasodilatation), NO (from NOS production-vasodilatation), and NPY (vasoconstriction) are well-known, but the neuropeptides CGRP, NPY, and SP (and also NO and VIP) are known to be involved in sensory nerve function and can influence the permeability of the capillaries. Orgasm is presumed to cause the decreased release of all of these and to enhance the release of the adren-
nic system transmitters, thus effectively decreasing the blood flow and the production of vaginal lubrication. At present, however, it should be noted that the knowledge of the exact functions of these active agents is still far behind our knowledge of their locations. Less attention has been paid to the longitudinal and circular smooth muscle coats of the vagina. They can contract spontaneously even in the nonpregnant woman and especially around menstruation, although the contractions are not perceived in consciousness (Levin, 1980, 1983, 42). The muscles possess both alpha and beta adrenoceptors: Blockade of the alpha system inhibits spontaneous contractions of vaginal muscle strips, whereas beta blockade-induced greater adrenergic-mediated contractions (Czekanowski, Urban, & Latech, 1971). The vepgic erection (neurotransmitter = VIP) decreases both tone and induces relaxation. During arousal, the vepgic innervation is likely to be dominated by facilitating smooth muscle relaxation of the vaginal wall and not reducing the caliber of its blood vessels, thereby allowing the activated lubrication mechanism to operate. Contraction of the smooth muscle, if it happens, does not occur until the late excitatory state just before orgasm.

Minora

Although the neural mechanisms and the neurotransmitters creating congestion and increased blood flow responses of the labia minora to sexual arousal have not been characterized, they are probably mediated by the mechanisms similar or even identical to those described above in the vagina (Levin, 1999b).

Uterus

The uterus was said to increase significantly in size during sexual arousal (Masters & Johnson, 1966) when monitored by palpation, though limited MRI imaging has not confirmed this (Schultz et al., 1999). It may be that the latter needs better resolution. Odd contractions of the uterus can occur during arousal, but at orgasm a specific pattern of contractions occurs.

Psychological/Cultural Aspects of Women’s Orgasm

Psychosocial Factors Related to Women’s Orgasm

The psychosocial factors most commonly discussed in relation to female orgasmic ability include age, education, social class, religion, personality, and relationship issues. Although no significant relation between education level and orgasmic ability with a partner has been found, substantial differences between education level and ability to attain orgasm during masturbation have been reported. Approximately 87% of women with an advanced degree reported “always” or “usually” attaining orgasm during...
nasturbation compared with 42% of women with a high school education (Laumann, Gagnon, Michael, & Michaels, 1994).

A negative relation between orgasmic ability and high religiosity has been reported. Laumann et al. (1994) found a substantially higher proportion (79%) of women with no religious affiliation reported being orgasmic during masturbation, compared with those having an affiliation with religious groups (53%-67%). However, there were substantial differences in education levels between religious categories. A relation between increased orgasmic ability and decreased sexual guilt has also been reported (Sholty et al., 1984). Low orgasmic experience has been consistently related to childhood loss or separation from the father, others who had been emotionally unavailable, or fathers with whom the women did not have a positive childhood relationship (S. Fisher, 1973). Reports of an association between early abuse and anorgasmic or inconsistent (e.g., Bartoi & Kinder, 1998; Feinauer, 1989; Meston, eiman, & Trapnell, 1999).

Orgasm consistency, quality, and satisfaction in women have been related to relationship factors, such as marital satisfaction, marital adjustment, happiness, and stability (for a review, see Mah & Binik, 1991), but rates of orgasm consistency in women are higher during masturbation than with a partner (Laumann et al., 1994). In summary, there are no consistent, empirical findings that psychosocial factors differentiate orgasmic from anorgasmic women. Research that systematically examines these factors among women who are more frequently diagnosed as either meeting or not meeting clinical criteria for male Orgasmic Disorder is needed.

Orgasm as a Goal of Women’s Sexual Encounters

Perceived wisdom, or a sex-role stereotype, is that men are goal-oriented to achieve orgasm; if it does not occur in a sexual encounter, they are supposedly dissatisfied and frustrated. For women, it is equally stated that orgasm is not as highly prized as a goal in such encounters (Wallin, 1960). Although some women consider coitus without achieving orgasm unfulfilling and frustrating, especially in relation to lack of dissipation of their pelvic congestion, others have a high ard for coitus and its pleasures but pay low regard to orgasm per se (Ifford, 1978, S. Fisher, 1973). Women have been noted to appreciate “afterglow” of sexual arousal and the body intimacy of being cuddled (Ifford, 1970; Schaefer, 1974) as much as the orgasm itself.

In questionnaires administered to a self-selected, rather than a statistically random population, it was reported that women, whether experienced orgasm or not, gave affection, intimacy, and love as

Cultural Aspects of Women’s Orgasm

Sexual arousal to orgasm through coitus is often thought of as a natural biological act, especially if linked to reproduction. A core concept of social constructionists, however, is that sexual behavior and identity are learned rather than intrinsic, and culture, with its social and historical factors, plays a large role in shaping, or at least trying to shape, an individual’s sexuality (Foucault, 1980). A very obvious involvement of culture/society in female sexuality has been the acknowledgement of female orgasms, which, in reality, means the acceptance of female sexual pleasure. Anthropologists have noted that in cultures expecting women to enjoy sex as men do, the women have orgasms, whereas in those cultures that censor such a concept, women have more difficulty attaining orgasm. Instances of societies that foster sexual pleasure for women and expect them to enjoy coitus include the Mundugumor (Mead, 1949) and the Mangai (Marshall, 1971). Mwana women are taught to have orgasms, hopefully two or three to her male partner’s one, and to try to attain mutual orgasm. Mwana males who are not able to give their partners multiple orgasms are not held in high esteem. At the other end of the spectrum are societies that assume women will have no pleasure from coitus and that the female orgasm does not exist. The Arapesh (Bateson & Mead, 1942) is such a society, as they do not even have a word in their language for the female orgasm. In a similar vein, the Sambia people of the Highlands of New Guinea (Herdt, 1981) accord the clitoris (lukandiku) no function or importance, and it is never mentioned in public by men. Moreover, men deny that there is a female orgasm (imbimboogu).
Female Orgasmic Disorder

Findings from the National Social and Health Life Survey conducted in the early 1990s (Laumann et al., 1994) suggest that orgasmic problems are the second most frequently reported sexual problems by women. In this random sample of 1,749 U.S. women, 24% reported a lack of orgasm in the past year for at least several months or more. This percentage is comparable to clinic-based data. Rosen, Taylor, Leiblum, and Bachman (1993) noted 29% of 329 healthy women (ages 18-73) who attended an outpatient gynecological clinic reported orgasmic problems, and Read, King, and Watson (1997) reported 23% of 104 women (18-65+) attending a U.K. general practice clinic reported anorgasmia. The consistent use of structured clinical interviews in nationally representative populations may clarify the prevalence of orgasm difficulties. A precise estimate of the incidence of orgasmic disorder in women is, however, difficult to determine because few well-controlled studies have been conducted, and definitions of orgasmic disorder vary widely between studies depending on the diagnostic criteria used. In the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR, American Psychiatric Association, 2000), Female Orgasmic Disorder (302.73) is defined using the following diagnostic criteria:

Persistent or recurrent delay in, or absence of, orgasm following a normal sexual excitement phase. Women exhibit wide variability in the type or intensity of stimulation that triggers orgasm. The diagnosis of Female Orgasmic Disorder should be based on the clinician's judgment that the woman's orgasmic capacity is less than would be reasonable for her age, sexual experience, and the adequacy of sexual stimulation she receives.

The DSM-IV-TR uses the terms lifelong versus acquired and generalized versus situational. However, some researchers of orgasm in women use the term secondary with little clarity as to whether this is an acquired inability to experience orgasm under any circumstances or is, in fact, a situational disorder possibly acquired rather than lifelong. The International Statistical Classification of Diseases and Related Health Problems (ICD-10) defines orgasmic dysfunction (F52.3) simply as "orgasm either does not occur or is markedly delayed." Regarding women who can obtain orgasm during intercourse with manual stimulation but not intercourse alone, the clinical consensus is that she would not meet criteria for clinical diagnosis.

Orgasm in the Postmenopause

A critical period in the aging process for women is the premenopausal-postmenopausal change. Compared to young women, the response to sexual stimulation in the laboratory in postmenopausal women showed delay in achieving full tumescence in the clitoris, marked decrease in breast volume engorgement, no engorgement of the uterus, delayed or absent vaginal lubrication, and decreased vaginal expansion. At orgasm, there were fewer vaginal contractions and rarely any rectal ones. The reduced number of vaginal and anal contractions, possible indicators of the intensity of pleasure according to Masters and Johnson (1966), suggested a "generalized reduction in the intensity of orgasm expression" (p. 135). Unfortunately, their wording is ambiguous and could mean either a real decrease in the intensity of orgasm or a decrease in the physical expression of orgasm at various sites. This decrease in intensity of orgasm was also reported by Basson (1995) in androgen deficient menopausal women. These women also had difficulty in trying to focus during arousal to orgasm.

In some menopausal women, pain can occur during and after the uterine/vaginal contractions of orgasm. Levin (2001) suggested that, in the premenopausal women, contractions of the vagina and uterus are induced by a neurotransmitter that has to overcome the inhibitory action of any released VIP. In the menopausal state, however, VIP is probably ineffective in relaxing smooth muscle (Palle, Bredekjær, Fahrenkrug, & Ottesen, 1991) so that the contractions of the uterus/vagina induced by the neurotransmitter at orgasm is unopposed, leading to spasmodic type contractions creating anoxia and thus pain. Giving oestrogen and progesterone together causes relief, but neither is adequate separately (Masters & Johnson, 1966).

Treatment

The treatment of anorgasmia has been approached from psychoanalytic, cognitive-behavioral, pharmacological, and systems theory perspectives (Heiman, 2000). Substantial empirical outcome research is available only for cognitive behavioral and, to a lesser degree, pharmacological approaches. Although there may be usefulness in other approaches, in particular psychodynamic and systemic treatments, we have no controlled or comparison research establishing their effectiveness. Hence, in this section, we will provide a review only of cognitive-behavioral techniques and pharmacotherapy used to treat female anorgasmia. To this end, Tables 6, 7, and 8 contain summaries of controlled and uncontrolled studies by treatment techniques. Definitive recommendations for treatment are based solely on controlled outcome research. One of the difficulties in assessing treatment effectiveness for anorgasmia is the nebulous nature in which studies often define orgasmic dysfunction. Although some investigators have used clinician inter-
views to determine whether women meet criteria for primary or secondary anorgasmia, others have relied solely on participant verbal reports of orgasmic difficulty or the results of brief self-report inventories. For this reason, whenever possible, information on the way in which orgasmic dysfunction is defined is included in the tables.

Cognitive-Behavioral Approaches

Cognitive-behavioral therapy for anorgasmia focuses on promoting changes in attitudes and sexually relevant thoughts, decreasing anxiety, and increasing orgasmic ability and satisfaction. Behavioral exercises traditionally prescribed to induce these changes include directed masturbation, sensate focus, and systematic desensitization. Sex education, communication skills training, and Kegel exercises are also often included in cognitive-behavioral treatment programs for anorgasmia.

Directed masturbation. Given that masturbation can be performed alone, any anxiety that may be associated with partner evaluation is eliminated. Similarly, the amount and intensity of sexual stimulation is directly under the woman’s control, and, therefore, the woman is not reliant upon her partner’s knowledge or her ability to communicate her needs to her partner. Research that shows a relation between masturbation and orgasmic ability provides empirical support for this treatment approach (Laumann et al., 1994).

Directed masturbation (DM) has been used to effectively treat anorgasmia in a variety of treatment modalities including, group, individual, couples therapy, and bibliotherapy. As can be seen in Table 6, the results from a number of outcome studies and case series indicate that directed masturbation is highly successful for treating primary anorgasmia. In a controlled comparison of therapist-directed group masturbation training, self-directed masturbation training (bibliotherapy), and wait-list control, Heinrich (1976) reported a 100% success rate for treating primary anorgasmia using therapist DM training at 2-month follow-up. Forty-seven percent of the bibliotherapy women reported becoming orgasmic during masturbation compared with 21% of wait-list controls. The effects of self-directed masturbation training were further investigated in a randomized trial comparing written versus videotaped masturbation assignments (McMullen & Rosen, 1979). After 6 weeks, 65% of the women using a text, and 55% of the women using videotapes had experienced orgasm during masturbation, and 50% and 30%, respectively, were orgasmic during intercourse. None of the control women had attained orgasm. More recently, Hurlbert and Apt (1995) compared the effectiveness of DM with coital alignment technique in 36 women with secondary anorgasmia. Coital alignment is a technique in which the woman assumes the supine position and the man positions himself up forward on the woman such that clitoral contact is maximized during coitus. Thirty-seven percent of women receiving instructions on coital alignment technique, versus 18% of those receiving DM, reported substantial improvements (> 50% increase) in orgasmic ability during intercourse after only four 30-minute sessions.

In summary, DM has been shown to be an empirically valid, efficacious treatment for women diagnosed with primary anorgasmia. For the woman with acquired anorgasmia who is averse to touching her genitals, DM may be beneficial. If, however, the woman is able to attain orgasm alone through masturbation but not with her partner, issues relating to communication, anxiety reduction, safety, trust, and ensuring the woman is receiving adequate stimulation, either via direct manual stimulation or engaging in intercourse using positions designed to maximize clitoral stimulation (i.e., coital alignment technique), may prove more helpful.

Anxiety reduction techniques. Anxiety can serve as a distraction that disrupts the processing of erotic cues by causing the woman to focus instead on performance related concerns, embarrassment, and/or guilt. It can lead the woman to engage in self-monitoring during sexual activity, an experience Masters and Johnson (1970) referred to as “spectatoring.” Some researchers have speculated that the increased sympathetic activation that accompanies an anxiety state may impair genital vasocongestion via inhibition of parasympathetic nervous system activity. Others have argued that sympathetic nervous system (SNS) activation plays more of a facilitatory than inhibitory role in sexual arousal (Meston, 2000).

As originally conceived by Masters and Johnson (1970), sensate focus involves a step-by-step sequence of body touching exercises, moving from nonsexual to increasingly sexual touching of one another’s body. Components specific for treating anorgasmic women often include non-demand genital touching by the partner, female guidance of genital manual and penile stimulation, and coital positions designed to maximize pleasurable stimulation. Sensate focus is primarily a couples’ skills learning approach designed to increase communication and awareness of sexually sensitive areas between partners. Conceptually, however, the removal of goal-focused orgasm, which can cause performance concerns, the hierarchical nature of the touching exercises, and the instruction not to advance to the next phase before feeling relaxed about the current one, suggest sensate focus is also largely an anxiety reduction technique and could be considered a modified form of in vivo desensitization.
Table 6
Psychological Treatment of Organic Dysfunctions

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Subject characteristics</th>
<th>Definition of anorgasmia</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled Outcome Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andersen (1981)</td>
<td>M age = 25; 25 married, all with regular partners; some sexual aversion; N = 30</td>
<td>Self-reported primary anorgasmia, also assessed via Sexual Interaction Inventory</td>
<td>SDa, DMb (G) vs. WLc; 10 sessions over 5 weeks</td>
<td>DM > SD, WL on organic response; 6-week follow-up DM > SD on organic response</td>
</tr>
<tr>
<td>Bogat, Hamernik, & Brooks (1987)</td>
<td>N = 11</td>
<td>Self-reported pre-orgasmic (less than 10% of time) with desire to improve ability, also assessed with Women’s Organic Efficacy and Comfort Scale</td>
<td>DM vs. no treatment (C)d; 10 sessions</td>
<td>88% improvement in orgasmic success in tx vs. controls</td>
</tr>
<tr>
<td>Delahanty (1982)</td>
<td>M age = 30, N = 28</td>
<td>Preorgasmic no history of orgasm within previous 5 years or primary anorgasmia; assessed via self-report and orgasm checklist</td>
<td>DM and assertiveness training in group therapy format for 10 weeks vs. WL</td>
<td>82% orgasmic success with tx</td>
</tr>
<tr>
<td>Eichel, Eichel, & Kule (1988)</td>
<td>CATe, M age = 40 (n = 22); Control: M age = 39 (n = 43) interested in sexual enhancement</td>
<td>Organic function assessed via Organic Attainment Criteria Scale</td>
<td>CAT (C) vs. no treatment (C)f</td>
<td>CAT group: improvement in frequency of orgasm, simultaneous orgasm, and orgasm satisfaction compared to controls; use of CAT by both groups correlated with improved frequency of all orgasm variables</td>
</tr>
<tr>
<td>Hoiman & LoPiccolo (1983)</td>
<td>M age = 30; 25 primary, 16 secondary, absence of severe marital distress; N = 41</td>
<td>Primary and secondary anorgasmia</td>
<td>CBTg, communication training; DM, SF, systemic conceptualization (C) vs. WL; 15/1 hr sessions</td>
<td>Primary and secondary: increased duration of foreplay and s; Primary: increased frequency of intercourse; increased orgasmic response during masturbation and s; Secondary: increased orgasmic response during s, increased initiation of sexual activity; 3-month follow-up Primary and secondary: gains maintained</td>
</tr>
</tbody>
</table>

Table 6 continued on following page.
<table>
<thead>
<tr>
<th>Authors, Year</th>
<th>Subject characteristics</th>
<th>Definition of anorgasmia</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riley & Riley (1978)</td>
<td>M age = 26; married; SF (n = 15); DM + SF (n = 26)</td>
<td>Primary anorgasmia, defined as organic inability regardless of type of sexual stimulation</td>
<td>DM and SF (C) vs. SF (C); 6 weekly and 6 bimonthly sessions</td>
<td>DM and SF; 18/20 orgasmic; SF: 8/15 orgasmic; 1-year follow-up gains maintained</td>
</tr>
<tr>
<td>No Control Outcome Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atkins & John, (1985)</td>
<td>M age = 28; M years in relationship = 3.5; N = 6</td>
<td>Self-reported primary organic dysfunction</td>
<td>DM and bibliotherapy; 10 sessions over 10 weeks</td>
<td>3/6 orgasmic success at partner-involvement with no intercourse phase; 6-month follow-up: 3/6 orgasmic success via masturbation or coitus with clitoral stimulation</td>
</tr>
<tr>
<td>Barbach (1974)</td>
<td>19-48 years; N = 83</td>
<td>Primary anorgasmia, defined as no orgasmic experience</td>
<td>DM (G); 10 sessions over 5 weeks</td>
<td>92% orgasmic with masturbation</td>
</tr>
<tr>
<td>Barbach & Flaherty (1980)</td>
<td>19 to 60 years; N = 56</td>
<td>Secondary anorgasmia</td>
<td>DM, communication training (I); 10, 14 hr sessions; follow-up on previous study</td>
<td>1-2-year follow-up: 60% increased orgasmic frequency with partners</td>
</tr>
<tr>
<td>De Amicis et al. (1985)</td>
<td>M age = 34; M years married = 13; 13 primary, 9 secondary; N = 22</td>
<td>Primary and secondary anorgasmia</td>
<td>Sensual awareness; SF, DM, communication training, modification of sexual interactions (C); 15-20 sessions</td>
<td>No change in orgasmic ability; increased sexual satisfaction; 3-year follow-up: Primary: increase in orgasmic ability with genital cues; Secondary: increase in orgasmic ability during masturbation</td>
</tr>
<tr>
<td>Erner-Hershfield & Kopel (1979)</td>
<td>M age = 26; 14/22 married; 13 primary, 9 secondary; N = 22</td>
<td>Pre-orgasmic, defined as either no orgasmic experience or less than 10% success achieving orgasm in the past, assessed via Survey of Sexual Activities</td>
<td>DM, spaced vs. massed sessions (G, G, I) vs. DM: spaced vs. massed sessions (G, G, I), all fashioned after Barbach (1976) and Hofmann, LoPiccolo, & LoPiccolo (1976) formats; 10 sessions over 5 weeks</td>
<td>91% orgasmic with masturbation; 23% orgasmic with partner; no difference G, I vs. C or spaced vs. massed sessions; 10-week follow-up: 82% orgasmic with partner</td>
</tr>
</tbody>
</table>

Table 6 continued on following page
Table 6
Psychological Treatment of Orgasmic Dysfunction (continued)

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Subject characteristics</th>
<th>Definition of anorgasmia</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sohle, Kilmann, & Folkins (1977)</td>
<td>3 primary, 3 secondary; 15 previous SD sessions; N = 6</td>
<td>Primary and secondary anorgasmia, assessed via Sexual Interaction Inventory</td>
<td>No change in orgasm</td>
<td></td>
</tr>
<tr>
<td>Wakefield (1987)</td>
<td>Analyses of data from Erster-Hersfeld & Kopel (1979); N = 15</td>
<td>Self-reported primary anorgasmia, assessed via Survey of Sexual Activities</td>
<td>DM: spaced vs. massed sessions (G, I) vs. DM: spaced vs. massed sessions (G, C); 10 sessions over 5 weeks</td>
<td>80% orgasm via masturbation; 7% orgasm via partner stimulation; no coital orgasm; 10-week follow-up: 93% orgasm via masturbation, 20% orgasm via partner stimulation; no coital orgasm</td>
</tr>
<tr>
<td>Wallace & Barbach (1974)</td>
<td>M age = 28; 11/17 married; all with partners; N = 17</td>
<td>Primary anorgasmia</td>
<td>DM (G); 10 sessions over 5 weeks</td>
<td>100% orgasmic with masturbation 87% orgasmic with partner; 6-month follow-up: gains maintained</td>
</tr>
</tbody>
</table>

Systematic Desensitization

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Subject characteristics</th>
<th>Definition of anorgasmia, also assessed via Sexual Interaction Inventory</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andersen (1981)</td>
<td>M age = 25; 25 married, all with regular partners; some sexual aversion; n = 30</td>
<td>Self-reported primary anorgasmia</td>
<td>SD (G) vs. DM (G) vs. WL; 10 sessions over 5 weeks</td>
<td>DM > SD, WL on orgasmic response; 6-week follow-up: DM > SD on orgasmic response</td>
</tr>
<tr>
<td>Husted (1972, 1975)</td>
<td>Mixed sexual dysfunction; all with partners; sexual anxiety; N = 30</td>
<td>N/A</td>
<td>SD: Imaginal (I) vs. (C) vs. in vivo (I) vs. (C) vs. No-treatment control; Imaginal M = 8 sessions, in vivo M = 13 sessions</td>
<td>SD: decreased anxiety, increased sexual frequency and orgasmic ability with masturbation; no difference (I) vs. (C) or imaginal vs. in vivo</td>
</tr>
<tr>
<td>Mathews et al. (1976)</td>
<td>M age = 28, 13 primary, 5 secondary; 17/18 low sexual desire/arousal; N = 18</td>
<td>Primary and secondary anorgasmia</td>
<td>SD, sexual tx (C) vs. SF, sexual tx (C) vs. SF, bibliotherapy (C); 10 sessions; 3 sessions and 10 week mailing for SF, bibliotherapy</td>
<td>2/16 increased orgasmic ability; no difference between groups; 4-month follow-up: no difference between groups</td>
</tr>
</tbody>
</table>

Table 6 continued on following page.
Table 6
Psychological Treatment of Organic Dysfunction (continued)

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Subject characteristics</th>
<th>Definition of anorgasmia</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Control Outcome Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooper (1970)</td>
<td>N = 50</td>
<td>Citaly anorgasmic, assessed by clinical interview</td>
<td>In vivo SD, sex education, psychotherapy (D); 21 sessions over 1 year</td>
<td>24/50 citaly anorgasmic; 26/50 unchanged or worse</td>
</tr>
<tr>
<td>Jones & Park (1972)</td>
<td>Anxiety; sexual shame; N = 55</td>
<td>Primary anorgasmia</td>
<td>SD with Bovril injections to induce relaxation (1 with partner); M = 14 sessions</td>
<td>82% anorgasmic success</td>
</tr>
<tr>
<td>Controlled Outcome Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carson, Baez, & Mathews (1978)</td>
<td>M age = 29; no sexual anxiety; Vaginismus or primary organ dysfunction; TM (n = 16); diazepam (n = 16)</td>
<td>Secondary anorgasmia assessed via self-report, clinician rating, and independent assessor rating</td>
<td>SF weekly; T, 10 mg daily vs. diazepam; 10 mg daily (C) vs. SF monthly; T vs. diazepam (C) SF weekly; 16 sessions, SF monthly; 5 sessions</td>
<td>No differences in orgasm between weekly vs. monthly T > diazepam frequency of orgasm; 6-month follow-up (after drug discontinuation): gains maintained</td>
</tr>
<tr>
<td>Chambliss et al. (1984)</td>
<td>M age = 27; N = 16 (group not specified)</td>
<td>< 30% orgasm with coitus; assessed with Women’s Sexuality Questionnaire</td>
<td>Kegel exercises vs. Attenuated placebo (nonsexual imagery) vs. WL; 6 weeks</td>
<td>No differences in coital orgasm frequency yet improvement in each group; no change in perceived vaginal stimulation during orgasm</td>
</tr>
<tr>
<td>Fichten, Libman, & Breden (1983)</td>
<td>M age = 33; secondary; M years married = 16; Organic < 25% of time; n = 48</td>
<td>Secondary anorgasmia, defined as at least 1 orgasmic experience, dissatisfaction with orgasmic frequency, and narrow range of orgasmic stimulation</td>
<td>Sexual information, relaxation, Kegel exercises, DM, SF, sexual communication training, bar on slit (C) vs. (G) vs. minimal contact bibliotherapy; 14 weeks</td>
<td>SF; no change in orgasm; increase in enjoyment of noncoital sexual caring</td>
</tr>
</tbody>
</table>

Table 6 continued on following page.

Table 6
Psychological Treatment of Organic Dysfunction (continued)

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Subject characteristics</th>
<th>Definition of anorgasmia</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kilmann et al. (1986)</td>
<td>M age = 33; 51 married; all with partners; no Dyspareunia or Vaginismus, no premature ejaculation in partners; N = 55</td>
<td>Secondary anorgasmia for 6 months with si or clitoral stimulation and distress about orgasmic ability; assessed via clinician interview and Sexual Behavior and Attitudes Questionnaire</td>
<td>2, 2 hrs sessions of sex education followed by Communication and sexual skills (C, G) vs. WL vs. Attenuated placebo</td>
<td>Communication and sexual skills > controls in coital orgasm ability; no difference between groups; 6-month follow-up: gains decreased, no difference between groups</td>
</tr>
<tr>
<td>Kilmann et al. (1987)</td>
<td>M age = 50; 10 married; no premature ejaculation in partners; N = 11</td>
<td>Secondary anorgasmia, defined as 50% coital orgasmic success or less over 5 months and dissatisfaction with orgasmic frequency, assessed via structured interviews, Sexual Interaction Inventory and Sexual Behavior and Attitudes Questionnaire</td>
<td>2, 2 hrs sessions of sex education followed by communication and sexual skills vs. WL vs. Attenuated placebo</td>
<td>Tx > WL, Attenuated placebo: increase in orgasmic ability with tx</td>
</tr>
<tr>
<td>LoPiccolo et al. (1985)</td>
<td>M age = 35; 12 primary, 19 secondary; M years married = 13; N = 31</td>
<td>Primary and secondary anorgasmia</td>
<td>CBT sexual therapy (LoPiccolo & Hagan, 1979) vs. WL (C), both for 15, 1-hr sessions</td>
<td>Primary and secondary: Increase in orgasm with masturbation; 3-month follow-up: gains maintained/improved</td>
</tr>
<tr>
<td>Mathews et al. (1976)</td>
<td>M age = 28; 13 primary, 5 secondary; 17/18 low sexual desire/aversive; N = 18</td>
<td>Organic dysfunction, defined as failure to experience orgasm and assessed via clinician interview</td>
<td>SD: sexual tx (C) vs. SF, sexual tx (C) vs. SF, bibliotherapy (C); 10 sessions; 3 sessions and 10 week mailing for SF, bibliotherapy</td>
<td>2/18 increased orgasmic ability; no difference between groups; 4-month follow-up: no difference between groups</td>
</tr>
<tr>
<td>Milan, Kilman, & Roland (1988)</td>
<td>M age = 33; secondary; M years relationship = 10; regular sexual partners with no sexual dysfunction; 9% orgasmic frequency pre-treatment; N = 38</td>
<td>Secondary anorgasmia, assessed via scale adapted from the Sexual Behavior and Attitudes Questionnaire</td>
<td>10, 2-hr sessions over 6 weeks of sex education plus either communication skills vs. sexual skills vs. combined sex and communication skills vs. didactic lecture vs. WL</td>
<td>2/6 years: no difference between tx groups, WL on sexual or relationship functioning</td>
</tr>
</tbody>
</table>

Table 6 continued on following page.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Subject characteristics</th>
<th>Definition of anorgasmia</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morecroft et al. (1969)</td>
<td>M age = 30; primary; M</td>
<td>Primary anorgasmia, assessed via Sexual History Form</td>
<td>DM and Bibliotherapy in either M age-related treatment for 4 sessions (MTC; n = 14) vs. Full therapist for 15 sessions (FTC; n = 20)</td>
<td>Increased orgasmic ability with masturbation and FTC vs. MTC increased frequency orgasm with masturbation</td>
</tr>
<tr>
<td>Roughan & Kunst (1981)</td>
<td>M age = 32; PC group (n = 14); Relaxation (n = 12); Control (n = 14)</td>
<td>Primary anorgasmia or secondary anorgasmia lasting over 2 years</td>
<td>PC (G: PC muscle exercises for PC contractions, 5 times daily for 12 weeks vs. Relaxation (G): physical relaxation for 12 weeks vs. no tx)</td>
<td>No relationship between PC muscle tone and orgasmic ability in any group</td>
</tr>
<tr>
<td>Van Lankveld et al. (2001)</td>
<td>M age = 37; M sexual dysfunction duration = 8 years; Hypoactive Desire Disorder; Vaginismus; Dyspareunia; Bibliotherapy (n = 9); WL control (n = 9)</td>
<td>DSM-IV diagnosis of orgasmic dysfunction via structured interview, with no distinction between primary and secondary anorgasmia, assessed via self-report and Golenbruk Rust Inventory of Sexual Satisfaction</td>
<td>Bibliotherapy (including communication skills, sexual education, and SF) and CBT with telephone support vs. WL 10 weeks</td>
<td>No improvement in orgasm in tx vs. controls</td>
</tr>
<tr>
<td>Blakeney et al. (1996)</td>
<td>10 primary, 28 secondary; some male sexual problems; N = 38</td>
<td>Primary and secondary anorgasmia</td>
<td>4-hr interview and 2/3 day workshops based on Masters & Johnson (1970) (C)</td>
<td>Primary: 70% orgasmic; Secondary: 57% orgasmic</td>
</tr>
</tbody>
</table>

Table 6 (continued on following page.)

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Subject characteristics</th>
<th>Definition of anorgasmia</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cottone-Hunt & Wheeler (1983)</td>
<td>M age tx group = 34; M age control group = 37; both groups with organic dysfunction; N = 70</td>
<td>Primary or secondary anorgasmia, method of assessment not specified</td>
<td>Combination of group and sex therapy approaches vs. no tx</td>
<td>Increased masturbation and orgasm through masturbation in tx vs. controls</td>
</tr>
<tr>
<td>Dodge, Glasgow, & O’Neill (1992)</td>
<td>M age = late 20s; N = 13</td>
<td>Primary or secondary anorgasmia (orgasmic mainly through masturbation); Sexual Interaction Inventory and Sexual Arousal Inventory</td>
<td>Tx of minimal-contact bibliotherapy in 3, 4-hr therapy sessions vs. delayed treatment group given information on human sexuality</td>
<td>Tx increased coital orgasm; 2/3 primary attained orgasm with tx vs. 0% orgasm in primary controls; no change orgasm via masturbation for tx or control; 6-week follow-up increase in coital orgasmic ability with tx</td>
</tr>
<tr>
<td>Golden et al. (1997)</td>
<td>M age = 27; 14/17 married; N = 17</td>
<td>Secondary anorgasmia as primary diagnosis, assessed via Goals for Sexual Therapy: Female form</td>
<td>Couples assigned SF, sexual skills, and communication skills in either a tx (G) vs. tx (C) format; 12 weeks</td>
<td>Couple and group tx improved orgasm satisfaction (data suggest group tx slightly more beneficial)</td>
</tr>
<tr>
<td>Jankovich & Miller (1998)</td>
<td>19-38 years; N = 17</td>
<td>Primary anorgasmia assessed via interview</td>
<td>Therapy and audiovisual sexual education over a single week (G)</td>
<td>7/17 experienced orgasm in a week: 4 via masturbation, 2 via partner manual stimulation, 1 via manual stimulation, 17 via a combination of all 3 methods</td>
</tr>
<tr>
<td>Kliman et al. (1983)</td>
<td>M age = 33; M years married = 10; 8.4% coital orgasm frequency; M dysfunction of 9.6 years; N = 48</td>
<td>Secondary anorgasmia, with orgasm frequency less than 50% for 3 months, assessed in interview; orgasmic ability also assessed via Sexual Behavior and Attitudes Questionnaire</td>
<td>Sex education during 2, 2-hr sessions within a single week (G)</td>
<td>Increases in orgasmic frequency subscale; increases in coital, noncoital, and masturbatory orgasm frequency</td>
</tr>
</tbody>
</table>

Table 6 (continued on following page.)
Table 6
Psychological Treatment of Organic Dysfunctions (continued)

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Subject characteristics</th>
<th>Definition of anorgasmia</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lazarus (1963)</td>
<td>M age = 35, married; one decreased desire/arousal; N = 16</td>
<td>Persistent organic dysfunction, method of assessment not specified</td>
<td>SD (1), M = 29 sessions over 6 months</td>
<td>9/16 "nearly always achieve orgasm"; 15-mo follow-up (4 patients); gains maintained or improved</td>
</tr>
<tr>
<td>Libman et al. (1984)</td>
<td>M age = 33, M years married = 10, 25% organic frequency; Couple (n = 7), Group (n = 8), Bibliotherapy (n = 9)</td>
<td>Secondary anorgasmia assessed via interview and Jewish General Hospital Sexual Behavior Questionnaire</td>
<td>15, 1-hr sessions over 14 weeks (G) vs. all-female groups for 15, 1½ hr sessions over 14 weeks (G) vs. Minimal Contact Bibliotherapy; 2 sessions at beginning and end of 14-week period</td>
<td>Therapy (C) and bibliotherapy > therapy (G) in orgasm with manual stimulation; therapy (G) > other groups in orgasm via giving and receiving manual stimulation; all improved orgasm via masturbation, giving and receiving manual stimulation, receiving oral stimulation</td>
</tr>
<tr>
<td>Masters & Johnson (1970)</td>
<td>159 primary, 11 masturbation dysfunction; 106 coital dysfunction; 22 random; N = 342 (1959-1964)</td>
<td>Primary and secondary anorgasmia</td>
<td>Sex education, SF, communication training, in vivo SD; 14 sessions over 2 weeks</td>
<td>Primary: 85% orgasmic; masturbation: 91% orgasmic; coital: 80% orgasmic; random: 65% orgasmic, 5-year follow-up: Primary 1% relapse; Secondary 3% relapse</td>
</tr>
<tr>
<td>McCabe (2001)</td>
<td>M age = 36; low sexual interest, arousal disorder, or vaginismus; N = 36</td>
<td>Orgasm dysfunction, assessed via Sexual Dysfunction Scale</td>
<td>CBT, SF, interpersonal communication; sexual skills, alleviating sexual anxiety</td>
<td>Anorgasmia decreased from 66.7% to 11.1% post-tx; increase in positive sexual attitudes</td>
</tr>
<tr>
<td>Sarwer & Durlak (1997)</td>
<td>Couples ages 20-60 years, married, N = 34</td>
<td>DSM-III diagnosis of inhibited orgasm</td>
<td>Behavioral treatment involved SF for 30 min per video lecture, and sex education material over 7 weeks of weekly sessions of 4 hrs</td>
<td>65% resolved orgasm dysfunction by end of tx</td>
</tr>
<tr>
<td>Sotile, Eldemary, & Follingstad (1977)</td>
<td>3 primary, 3 secondary; N = 6</td>
<td>Primary and secondary anorgasmia</td>
<td>Sexual and communication skill training, sexual education, SF, DM, Kegel ex, role-play orgasm (C); 6/16 hr sessions</td>
<td>Decreased sexual anxiety, increased sexual communication</td>
</tr>
</tbody>
</table>

Table 6 continued on facing page.
Table 7
Pharmacological Treatments for Nonantidepressant-Induced Organic Dysfunctions

<table>
<thead>
<tr>
<th>Author(s), Year</th>
<th>Subject characteristics</th>
<th>Definition of orgasmia</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ito, Tran, & Polan (2001)</td>
<td>M age = 43; 6 subjects with previous sexual dysfunction; N = 77</td>
<td>Orgasm function assessed with Female Sexual Functioning Index</td>
<td>ArginMax herbal supplement for 4 weeks vs. placebo</td>
<td>47.1% of ArginMax tx* improvement in orgasm function at 4 weeks vs. 30.2% in placebo group</td>
</tr>
<tr>
<td>Modell, Muy, & Kadduri (2000)</td>
<td>21-54 years; healthy; N = 20</td>
<td>Self-reported secondary anorgasmia as inhibited or delayed orgasm in appropriate time frame</td>
<td>Bupropion 3-week placebo dose, 3-week bupropion SR (150 mg) 1 per day plus placebo dose, 3-week bupropion SR (150 mg) 2 times per day</td>
<td>No improvement in orgasm, satisfaction, or intensity beyond placebo with either 150 or 300 mg doses</td>
</tr>
<tr>
<td>Zaiecka et al. (2002)</td>
<td>M age = 43; 66% of sample female; depression; 48% women reported baseline sexual dysfunction; Nefazodone (n = 144), CBASP (n = 140), Combined (n = 155)</td>
<td>Difficult, less intense, or lack of orgasm</td>
<td>Nefazodone (200-600 mg/day), CBASP 2 times weekly, or combination for 12-week period</td>
<td>Improvement in orgasm in nefazodone, CBASP, and combination tx groups at 12 weeks vs. baseline</td>
</tr>
<tr>
<td>J.R. Berman et al (2001)</td>
<td>M age = 46; all women with Female Sexual Arousal Disorder; hypoactive sexual desire disorder; N = 44</td>
<td>Difficulty or inability to achieve orgasm, assessed via Brief Index of Sexual Functioning (BISF-W) and Female Intervention Efficacy Index (FIEI)</td>
<td>Sildenafil (100 mg) at second visit and 6-week home supply</td>
<td>BISF-W: Increase in orgasm; FIEI: 67% increased orgasmic ability</td>
</tr>
</tbody>
</table>

Table 7 continued on following page.
Table 8
Pharmacological Treatments for Antidepressant-Induced Organismic Dysfunction (continued)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Subject Characteristics</th>
<th>Antidepressant</th>
<th>Definition of Anorgasmia</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michelson et al. (2000)</td>
<td>Depression, anxiety disorder; OCD; premenstrual syndrome; premenopausal or estrogen replacement; decreased arousal and pleasure; Buspirone (n = 19), Amanadine (n = 18), Placebo (n = 20)</td>
<td>Fluoxetine dosage by group: Buspirone (31.4 mg/d), Amanadine (28.4 mg/d), and Placebo (29.7 mg/d)</td>
<td>Impaired orgasm, assessed by clinician, self-report, daily diary, and Interview Rating of Sexual Function scale</td>
<td>Baseline and 4-week dose, respectively: Amanadine (58, 100 mg/d); Buspirone (20, 30 mg/d); Placebo; Fluoxetine during tx</td>
<td>Improved orgasm in tx and placebo; no difference tx vs. placebo</td>
</tr>
<tr>
<td>Aizenberg et al. (1999)</td>
<td>M age = 7; MDD, OCD, panic disorder, bipolar I disorder; N = 16</td>
<td>Fluoxetine (20-40 mg/d), paroxetine (20-40 mg/d), fluvoxamine (200 mg/d), clomipramine (75-150 mg/d)</td>
<td>Self-reported that orgasm function had "markedly decreased"</td>
<td>Lisinopril (15 mg) at bedtime; SSRI continued during tx</td>
<td>62% improvement in orgasm function; 3/16 improved orgasm function to a minor disturbance</td>
</tr>
<tr>
<td>Ashton & Reisen (1998)</td>
<td>M age = 42; effective or anxiety disorders; desire and arousal complaints; N = 28</td>
<td>Paroxetine, fluoxetine, sertraline, venlafaxine, fluvoxamine</td>
<td>Delayed orgasm or anorgasmia, assessed via clinical interview</td>
<td>Bupropion (75-150 mg/d) 1-2 hr before sexual activity; if no response, 75 mg three times daily for 3 days, 75 mg twice daily for 3 days, and 75 mg three times daily for 2 weeks (longest tx period, 9 months); SRI during tx</td>
<td>Improvement in 71% of orgasm complaints</td>
</tr>
<tr>
<td>Berk et al. (2000)</td>
<td>M age = 42; diagnoses include major depression, OCD, bulimia, social phobia, bipolar II disorder, panic disorder;</td>
<td>Clomipramine (≤ 250 mg/d), paroxetine (≤ 40 mg/d), sertraline (≤ 150 mg/d), fluoxetine (≤ 200 mg/d), fluoxetine</td>
<td>Self-reported orgasm difficulty, frequency of difficulty, satisfaction, and intensity via Feigl scale</td>
<td>Sequential course of granisetron (1mg) and sumatriptan (50 mg) 1 hr before sexual activity</td>
<td>Improvement in orgasm difficulty and frequency of difficulty with granisetron; no improvement with sumatriptan</td>
</tr>
</tbody>
</table>

Table 8 continued on following page.
<table>
<thead>
<tr>
<th>Author(s), Year</th>
<th>Subject Characteristics</th>
<th>Antidepressant</th>
<th>Definition of Anorgasmia</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clayton et al., 2001</td>
<td>Trichotillomania, and/or borderline personality disorder; N = 16</td>
<td>Fluoxetine (M dose = 25 mg/d), sertraline (M dose = 94 mg/d), fluoxetine (M dose = 12.5 mg/d), and venlafaxine (M dose = 225 mg/d)</td>
<td>Orgasmic ability via Changes in interview form of Sexual Functioning Questionnaire</td>
<td>Bupropion (150 minimum at start, 345 mg average ending dose) daily or twice daily, for 8 weeks; SSRI discontinuation by 4 weeks</td>
<td>Improvement in orgasm subscale scores after discontinuation of SSRI</td>
</tr>
<tr>
<td>Cohen & Bartlik, 1998</td>
<td>Decreased libido and orgasm dysfunction; N = 33</td>
<td>Fluoxetine, nefazodone, bupropion, sertraline, paroxetine, venlafaxine, phenelzine, or vivactil</td>
<td>Delayed or inhibited orgasm through clinical interview or self-report</td>
<td>Ginkgo Biloba (40-60 mg) 2 times daily up to 120 mg twice daily for 4 weeks; antidepressants continued during tx</td>
<td>Improvement in orgasmic function assessed via clinical interview and self-report</td>
</tr>
<tr>
<td>Gelenberg et al., 2000</td>
<td>Age 43; improvement in MDD with SSRI; 12/19 female in total sample; N = 12</td>
<td>Fluoxetine (20-80 mg/d), sertraline (50-150 mg/d), paroxetine (20 mg/d)</td>
<td>Orgasmic dysfunction diagnosed by clinician via DSM-IV interview and self-reported through Arizona Sexual Experiences Scale</td>
<td>1-2 week washout; Mirtazapine (7.5 mg to 45 mg/d) for 3-6 weeks</td>
<td>6 weeks: Improvement in orgasm function but not satisfaction (results of males and females reported together)</td>
</tr>
<tr>
<td>Gitlin et al., 2002</td>
<td>M age = 41; History of MDD, dysthymic disorder, or depressive disorder not otherwise specified; not currently depressed; M doses presented in next column; N = 15</td>
<td>Fluoxetine (33 mg/d), sertraline (106 mg/d), paroxetine (31 mg/d), or citalopram (20 mg/d)</td>
<td>Self-reported orgasmic ability and satisfaction via Arizona Sexual Experiences Scale</td>
<td>Bupropion SR (100-50 mg) 2 times daily for 7 weeks</td>
<td>Improvement in ease of reaching orgasm, non improvement in orgasm satisfaction</td>
</tr>
</tbody>
</table>

* MDD = Major depressive disorder. SSRI = Selective serotonin reuptake inhibitor. Tx = Treatment. OCD = Obsessive compulsive disorder. SRI = Serotonin reuptake inhibitor. ns = Nonsignificant.
The success of using anxiety reduction techniques for treating anorgasmia is difficult to assess because most investigators have used some combination of anxiety reduction, sexual techniques training, sex education, communication training, bibliotherapy, and Kegel exercises, and have not systematically evaluated the independent contributions to treatment outcome. In the controlled studies in which anxiety reduction techniques have been included, rarely has treatment outcome for lifelong versus acquired female orgasmic disorder been differentiated. As can be seen in Table 6, across studies women have reported decreases in sexual anxiety and, occasionally, increases in frequency of sexual intercourse and sexual satisfaction with systematic desensitization, but substantial improvements in orgasmic ability have not been noted. Similarly, in the few controlled studies that have included sensate focus as a treatment component, none have reported notable increases in orgasmic ability. These findings suggest that, in most cases, anxiety does not appear to play a causal role in anorgasmia, and anxiety reduction techniques are best suited for anorgasmic women only when sexual anxiety is coexistent.

Other behavioral techniques. Ignorance about female anatomy and/or techniques for maximizing pleasurable sensations can certainly contribute to orgasm difficulties. Kilmann and associates (1986) compared the effectiveness of various sequences of sex education and communication skills versus wait-list control on orgasmic ability in women with secondary anorgasmia. The authors found sex education to be beneficial for enhancing coital ability at posttest but not at 6-month follow-up. In a comparison study of the effectiveness of sex therapy versus communication skills training for secondary anorgasmia, Everaerd and Dekker (1982) found both treatments were equally effective in improving orgasmic ability. As can be seen in Table 6, in treatment comparison studies, it has been generally found that there were no differences in orgasmic ability between women whose therapy included using Kegel exercises versus those whose therapy did not. To the extent that Kegel exercise may enhance arousal and/or help the woman become more aware and comfortable with her genitals, these exercises may enhance orgasm ability (Heiman, 2000). In summary, there is no direct empirical evidence to suggest that sex education, communication skills training, or Kegel exercises alone are effective for treating either primary or secondary anorgasmia. A review of studies suggests they may serve as beneficial adjuncts to therapy.

Pharmacological Approaches

There have been few placebo-controlled studies in which the effectiveness of pharmacological agents for treating Female Orgasmic Disorder has been examined. Of the few published, in most the efficacy of agents for treating antidepressant-induced anorgasmia has been examined. Whether pharmacological agents would have the same treatment outcome effect on non-drug-induced versus drug-induced anorgasmia is not known.

Nondrug-induced anorgasmia. Using a single-blind design, Modell and associates (2000) reported no significant effect beyond placebo of either 150 mg/day or 300 mg/day bupropion-SR on orgasm in 20 women with delayed or inhibited orgasm. Ito, Trant, and Polan (2001) conducted a double-blind, placebo-controlled study of ArginMax, a nutritional supplement comprised of ginseng, Ginkgo biloba, Damiana leaf, and various vitamins, on sexual function in 77 women with unspecified sexual function and reported a marginally significantly group difference. It cannot be determined from the report how many women would meet a clinical diagnosis for anorgasmia. To date, there have been no published placebo-controlled studies on sildenafil for female anorgasmia. However, data from a recent double-blind, cross-over, placebo-controlled study on 38 sexually healthy women indicated that 50 mg of sildenafil an hour before sexual activity improved self-reported orgasm function (Caruso, Intelisano, Farina, Di Mari, & Agnello, 2003). Specifically, sildenafil significantly improved orgasm beyond baseline and placebo conditions. Future placebo-controlled studies should clarify how sildenafil impacts orgasm among women with diagnosed orgasmic disorder.

Antidepressant-induced anorgasmia. As can be seen in Table 8, there are a number of case reports and open-label studies in which success in alleviating SSRI-induced anorgasmia with various agents has been reported. Findings from the few placebo-controlled studies published are less optimistic. Michelson, Bancroft, Targum, Kim, and Tepner (2000) examined the comparative effects of 8 weeks of treatment with either bupropion (20 mg/day; n = 19), amantadine (50 mg/day; n = 18), or placebo (n = 20) on fluoxetine-induced sexual dysfunction in premenopausal women reporting either impaired orgasm or sexual arousal. The authors reported all groups experienced an improvement in orgasm during treatment, but neither bupropion nor amantadine was more effective than placebo in restoring orgasmic function. At a higher dose level (mean daily dose = 47 mg), bupropion showed a marginally significant alleviation of sexual side effects in women taking either citalopram or paroxetine compared with placebo (Landen, Eriksson, Agren, & Fahlen, 1999). The authors did not distinguish between orgasm and desire disorders in either the classification of patients or treatment outcome. In a randomized, double-blind, parallel, placebo-controlled study of mirtazapine (15 mg/day), yohimbine (5.4 mg/day), olanzapine (.25
mg/day) or placebo for fluoxetine-induced sexual dysfunction, Michelson, Kocihan, Tamura, and Morrison (2002) found no significant improvement in orgasmic ability beyond placebo in 107 women with either impaired orgasm or vaginal lubrication. Kang, Lee, Kim, and Cho (2002) reported no significant effect of Ginkgo-biloba beyond placebo in a small group of women with SSRRI-induced sexual dysfunction. Moston (2004) reported no significant effect of ephedrine (50 mg 1-hr prior to intercourse) beyond placebo on orgasmic function in 19 women with sexual side effects secondary to either fluoxetine, soratrine, or paroxetine treatment (Level 1 evidence).

In summary, to date there are no pharmacological agents proven to be beneficial beyond placebo in enhancing orgasmic function in women. Placebo-controlled research is needed to examine the effectiveness of agents with demonstrated success in case series or open-label trials (i.e., granisetron, and sildenafil) on orgasmic function in women.

Summary on Treatment

As in other areas of research on complex, multidetermined disorders, we would expect considerable benefit from comparing psychological to pharmacological techniques, and examining women's preferences with regards to treatment. Given that partner variables are under-researched, we lack a full description of the sociopsychological factors that play a role in women's orgasmic response, consistency, and relationship satisfaction and thus in the treatment of orgasmic disorders.

References

Andersen, B. L. (1981). A comparison of systematic desensitization and directed mastur-
C. MESTON, R. LEVIN, M. SIPSKI, E. HULL, & J. HEIMAN

Bupropion sustained release and fluoxetine. *Clinical Therapeutics*, 23, 1045-1058.

Evers-Herrenfeld, R., & Kopel, S. (1979). Group treatment of preorgasmic women: Evaluating...

Surgical Obstetrics and Gynecology, 60, 521–524.

C. MESTON, R. LEVIN, M. SIPSKI, E. HULL, & J. HEIMAN

Sotile, W. M., & Kilmann, P. R. (1987). Effects of group systematic desensitization on